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Abstract 

This study investigates whether high-skilled immigration in a sample of OECD countries fosters 
technological diversification in the migrants' countries of origin. We focus on migrant inventors and 
study their role as vectors of knowledge remittances. Further, we particularly analyze whether migrants 
spark related or unrelated diversification back home. To account for the uneven distribution of 
knowledge and immigrants within the host countries, we break down the analysis at the metropolitan 
area level. Our results suggest that inventors' diasporas have a positive effect on the home countries' 
technological diversification, particularly for developing countries and technologies with less related 
activities around - thus fostering unrelated diversification. 
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1 Introduction

Innovation and technical change are well-known drivers of economic growth of countries

(Romer, 1994). Yet, technical change relies heavily on the countries’ past technological

trajectories, which tend to be path-dependent (Dosi, 1997). When countries manage to

diversify into different activities, they tend to do it to technologically adjacent domains, as

shown by the principle of relatedness (Hidalgo et al., 2007; Petralia et al., 2017; Hidalgo et al.,

2018; Kogler et al., 2013; Boschma et al., 2015). However, in order to avoid technological lock-

in, they must move into technological paths located far away from their current knowledge

base (unrelated diversification) (Saviotti and Frenken, 2008). Unrelated diversification might

be more difficult to create and more likely to fail, but if achieved, it can potentially foster

structural change (Neffke et al., 2018), making countries less vulnerable to technology shocks

and more prone to economic growth in the long run (Pinheiro et al., 2018). This might

be especially relevant for developing countries, as they rely on a relatively low number of

actual activities from which they can diversify into new technologies (Hidalgo et al., 2018).

The question remains, however, on who are the agents able to spark (related and unrelated)

technological change.

This paper investigates the relationship between skilled immigration (proxied by inven-

tors) in a sample of OECD countries and technological diversification in the migrants’ country

of origin.1 Using the framework of the branching literature (Hidalgo et al., 2007; Hausmann

et al., 2007; Essletzbichler, 2015; Rigby, 2015; Boschma, 2017), we test the hypothesis that

migrant inventors abroad (inventor diasporas) stimulate new patent applications in their

countries of origin in technologies in which the destination area is relatively specialized -

while the country of origin is not, and therefore foster technical change at home. While

this literature has generally focused on the internal factors driving technological diversifica-

1We use inventors as a proxy for high-skilled workers. Although we are aware that they are not exactly the
same, the former are a critical component of the latter, and a good proxy for knowledge or STEM workers.
Even though in parts of the text we refer to high-skilled migration, our empirical analysis is focused on
inventors migration only.
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tion, external factors have been mostly overlooked (Neffke et al., 2018; Whittle et al., 2020).

This includes the potential role of international migrants (Bahar et al., 2020). Further, the

literature has generally focused on the process of related diversification, and unrelated diver-

sification has received less attention (Boschma, 2017). Thus, building upon the concept of

relatedness (Hidalgo et al., 2018), which refers to the similarity between activities (products,

industries, research areas) in terms of scientific knowledge, technical principles, heuristics,

and common needs (Petralia et al., 2017), we test whether migration-induced diversification

tends to be related or unrelated to the current knowledge base.

Migration, especially of the highly-skilled, is nowadays a widespread phenomenon. The

third wave of globalization opened new opportunities for human capital to reallocate, gener-

ating an increase in international migration of college educated workers (Kerr et al., 2016).

This has given raise to an increasing number of studies showing the influence of high-skilled

migration on innovation in host countries (Stephan and Levin, 2001; Chellaraj et al., 2008;

Hunt and Gauthier-Loiselle, 2010; Kerr and Lincoln, 2010; Moser et al., 2014; Bosetti et al.,

2015; Ganguli, 2015; Akcigit et al., 2017; Choudhury and Kim, 2019). The relationship be-

tween high-skilled diasporas and home countries’ access to foreign technology - knowledge

remittances - has been also studied (Kerr, 2008; Agrawal et al., 2011; Breschi et al., 2017;

Bahar et al., 2020; Fackler et al., 2020; Miguelez and Temgoua, 2020).2

To understand the role of inventor diasporas on home country technological diversifica-

tion, we rely on an original database with information on worldwide patent families (Miguelez

et al., 2019; WIPO, 2019). We focus on the five most common destination countries for mi-

grant inventors: United States (US), Germany, Switzerland, United Kingdom, and France.

They are also among the most technology advanced countries in the world, and sources of

international knowledge spillovers (Coe and Helpman, 1995; Keller, 2004; Coe et al., 2009).

As sending countries of these inventors, we work with a sample of 137 economies (both high-

2For an exhaustive review on skilled migration and knowledge diffusion, see Lissoni (2018); for a review
on the effects of diasporas on home countries’ development, see Bahar (2020). However, the role of diasporas
in fostering technical, structural change at home is less known.
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income and developing ones). We classify patent families in 636 technologies according to

the first four digits of the International Patent Classification (IPC). As measures of diversi-

fication and technical change, we look at the growth of patents per country and technology,

as well as entry into new specializations. For that we calculate a Revealed Technological Ad-

vantage (RTA) index (Soete, 1987) to measure relative specialization, and the time evolution

of this index to look at countries that became specialized in classes in which they were not

specialized in the past.

As in Bahar et al. (2020), we build our migration proxy exclusively based on inventors’

migration data using the database by Miguelez and Fink (2013). Focusing on inventor mi-

gration as captured in patent applications can overcome many of the limitations associated

with census-based data. It captures one specific class of high-skilled workers, more homoge-

neous than the group of tertiary-educated workers as a whole, often behind the creation and

diffusion of ideas.

All in all, we introduce three main novelties with respect to the existing literature. First

and foremost, we study the capacity of inventor diasporas to foster technological change in

their home countries. Differently from Bahar et al. (2020), we account for the fact that

geographic areas within host countries tend to specialize in very different technologies and

skills (Kogler et al., 2013). Moreover, migrants do not evenly distribute within a country, but

tend to agglomerate in highly innovative, urban areas (Kerr, 2010; Verginer and Riccaboni,

2021). Further, they tend to settle where previous co-nationals migrated (Munshi, 2003; Beine

et al., 2011), thus leading to within country specialization in specific foreign nationalities.

For instance, in the US, the MSA of San José is highly specialized in technologies such as

telecommunications, computer technology, or semiconductors, while Detroit specializes in

engines, turbines, or mechanical tools. Meanwhile, San José largely welcomes inventors from

India, followed by inventors from China and, to a lesser extent, Germany. Detroit is home of

mainly German inventors, followed at a distance by Indians and Chinese.
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Second, as our most novel contribution, we qualify the direction of technical change by

investigating whether inventor diasporas are more prone to foster unrelated technological

change - whose development would have been more difficult had they relied upon the actual

knowledge base of the country, which potentially may lead to structural change (Neffke et al.,

2018).

Finally, we investigate heterogeneous effects based on the level of economic development

of sending countries. Externally-driven technological change might be particularly important

for developing countries, as they lack the preconditions necessary for diversifying into new

technologies (Petralia et al., 2017). While, as argued above, related diversification in not a

negative process per se, the risk is to become locked in the development of a certain group of

technologies, narrowing down diversification opportunities and complicating the catching-up

process with high-income countries (Hidalgo et al., 2007).

To anticipate the results to come, we find a positive and significant coefficient of migra-

tion on both our dependent variables, suggesting a positive relationship with technological

diversification, in line with the literature earlier mentioned. We also find a negative and sig-

nificant coefficient for the interaction between migration and relatedness density, supporting

the hypothesis that external knowledge flows aid countries to diversify into new, unrelated

technologies and break path dependency. Moreover, when analyzing the heterogeneity be-

tween high income and developing countries, we find that our core results specifically hold for

the latter. This supports the hypothesis that having a diaspora abroad does not necessarily

imply a brain drain for developing countries. By bringing new ideas, skilled diasporas may

help compensate for the lack of domestic knowledge and foster technological development and

diversification. Contrarily, high-income economies seem not to benefit that much from their

skilled nationals abroad. Our results are robust to the inclusion of control variables, a large

number of fixed effects, and to the implementation of an instrumental variables strategy.

The remaining of the paper is organized as follows: Section 2 surveys the literature on
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technological diversification, and the contribution of migration to knowledge diffusion and

innovation ; Section 3 describes the data with some more detail, and explains our methodology

and empirical strategy; Section 4 presents the step by step results; finally, Section 5 concludes.

2 Related literature

While the production of new technologies is a widely unquestioned track to growth and

development, less is known on the factors moving technological change one way or another.

As diversification usually follows a path-dependent process (Dosi, 1997), it is assumed that

the actual set of capabilities conditions which new activities will countries be able to develop

(Boschma, 2017), in accordance with the concept of relatedness (Hidalgo et al., 2018). Several

empirical studies show that the diversification possibilities at the country (Hidalgo et al.,

2007; Petralia et al., 2017), region (Boschma, 2017; Rigby, 2015; Balland et al., 2019) and

firm (Jaffe, 1986; Breschi et al., 2003) levels are affected by the related capabilities present

in the country, region and firm. For instance, at the country level, Hidalgo et al. (2007) show

that countries have a higher probability to add to their basket of export products that are

related to the ones they already produce/export. An important implication is that developing

countries are usually located in the periphery of the product space, with consequently fewer

opportunities for diversification. Petralia et al. (2017) confirm the role of relatedness in

binding countries’ technological diversification patterns, particularly of countries at early

stages of development, concluding that developing countries tend to be more exposed to

the risk of technological lock-in. Developing countries seem, therefore, the places with more

potential to benefit from the introduction of diversification from abroad.

This literature is particularly rich at the regional level. Neffke et al. (2011), looking at

the evolution of Swedish regions, show that these tend to enter new industries when related

sectors are already present locally, way more than if the new industry is unrelated to the

current industrial base. Similar results are found for the US using technologies and patent
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data by Rigby (2015) and Boschma et al. (2015), among many others.

In general, this literature shows that related diversification in countries and regions

reigns, while unrelated changes are more difficult to occur (Pinheiro et al., 2018). Yet,

unrelated diversification is also possible, and has been shown to be beneficial for countries

and regions - especially in the long run. Saviotti and Frenken (2008) stress the particular role

of unrelated export diversification in ensuring long-term economic growth and development,

for a sample of countries. Pinheiro et al. (2018) analyze the export diversification paths

of countries over the long run, to show that unrelated diversification tends to occur in only

7.2% of the cases. However, countries entering more unrelated products tend to growth faster

than those only entering related products, evidencing the importance of export diversity for

development, which has been associated to higher resilient economic systems.

Here it is important to appreciate the role of external actors able to break lock-in and

path dependency. Bahar et al. (2014) investigate the role of distance on the evolution of com-

parative advantages in trade, finding that countries are more likely to add in their basket of

export products already exported by neighbor countries, even if they have different factors’

endowments. These findings confirm that knowledge tends to be localized, therefore con-

tributing to fuel the debate on the importance of human interactions for knowledge diffusion.

Neffke et al. (2018) look at emerging economic activities in Swedish regions, and found that

newcomer firms are more likely to introduce new, unrelated activities into regions, especially

if they arrive reallocated from other regions. They are therefore the agents able to foster

structural change in the economy. In a similar vein, Multinational Corporations (MNC) have

been regarded to be key agents of structural change in regions (Elekes et al., 2019; Crescenzi

et al., 2020). To our knowledge, the role of international skilled migrants has received less

attention.

In the literature of the early 1970s, the emigration of high-skilled individuals was widely

seen as a potential threat for developing countries, relatively less endowed with human cap-
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ital and more vulnerable to its loss (Bhagwati and Hamada, 1974; Bhagwati, 1976). Yet,

an increasing number of studies in recent years have reported that migrants may create

transnational communities keeping connections with their home countries and establishing

links with migrants living in other places (McAuliffe and Ruhs, 2017; Saxenian, 2007). Thus,

the existence of a high-skilled diaspora exposes their home countries to foreign technologi-

cal knowledge and may constitute an important resource or, borrowing the expression from

Agrawal et al. (2011), a brain bank.

Knowledge remittances may travel through different, non-mutually exclusive, forms. One

channel of technology transfer is the transmission of knowledge and skills from high-skilled

migrants to their social contacts back home (referred to as ethnically driven knowledge flows

(Breschi et al., 2017)), on a friendly or contractual basis. Knowledge transfers to home

countries may occur also when high-skilled workers decide to return on a permanent or

temporary basis, equipped with new skills and social networks (Baruffaldi and Landoni,

2012; Choudhury, 2016).3

Kerr (2008), by combining patents with industry-level manufacturing data, shows that

the industry output of the sending countries increases as the respective ethnic communities

develop knowledge in the US. Breschi et al. (2017) define a brain gain effect when a foreign

patent receives a higher number of citations in the home country of the inventor. The authors

highlight a positive effect of high-skilled migration on brain gain for all the emerging countries

except for India and underline the importance of absorptive capacity in the country of origin.

Kerr and Kerr (2018) scrutinize global collaborative patents, defined as patents where

at least one inventor is located within the US and at least one resides in a foreign country, of

US public firms. According to the authors, global collaborative patents are more impactful

than those where all team is located either in the US or abroad. Moreover, US-based firms

3Sending countries can also benefit from their diasporas abroad through the action of MNCs, by means
of multi-establishment, international teams, or through internal mobility of skilled labor (Branstetter et al.,
2015; Choudhury and Kim, 2019)

7



employing foreign inventors are more likely to engage in these collaborative patents. In

a similar vein, Marino et al. (2019) analyze the citation patterns of global collaborative

patents. The authors find that US-based inventors, whose foreign ethnicity matches the

foreign region in which the other members of the team are located, act as bridges between

the multinationals’ headquarters and their home countries, facilitating the access to foreign

knowledge for the latter. Miguelez (2018) explores the impact of high-skilled diaspora on

cross-country patent collaborations between developed and developing countries, finding a

positive and robust effect. Choudhury (2016) investigates the role of return migrant managers

on the patent activity of 50 US multinationals’ R&D centers based in India. The study finds

that returnee migrant managers facilitate greater innovation among their local employees, as

they connect them with ideas and resources of the US headquarters.

The studies mentioned so far focus on whether migration allows countries of origin to

access foreign knowledge, yet they do not analyze whether these knowledge flows transform

the home countries’ economies. Moreover, the use of citations as a proxy for knowledge flows

has been recently criticized as flawed (Jaffe and De Rassenfosse, 2019; Arora et al., 2018).

A recent strand of literature focuses on the impact of migration, as a channel of knowledge

diffusion, on the evolution of comparative advantages. Bahar and Rapoport (2018) examine

the impact of migration on the extensive (whether a country starts to export a new product

from scratch) and the intensive margin (whether a country increases the exports for a given

product) of trade of both sending and receiving countries. A follow-up study by Bahar et al.

(2020), using data on patents and migrant inventors, shows a positive and robust impact

of inventor migration on their host countries and non-significant results for migrants’ home

countries patenting.

The last described strand of literature, although providing interesting results on the rela-

tionship between migration and diversification, is essentially silent on how external knowledge

flows interact with countries’ endogenous productive and technological capabilities. It does
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not speak therefore on the qualitative aspects of diversification (related or unrelated to the

current knowledge base). In this vein, our paper analyzes how relatedness and knowledge

remittances interplay, and sheds light on whether or not inventors’ migration creates social

bridges between lagging-behind countries and developed areas where advanced knowledge

is present, helping to break the technological path dependency of countries and promoting

structural change.

3 Data and methods

3.1 Data and sample construction

To build the dependent variables, we use an original database that gathers information on

34 million of worldwide patent families (Miguelez et al., 2019). The data cover all patent

documents worldwide, filed in any patent office - provided that they are available in the

European Patent Office’s (EPO) Worldwide Patent Statistical Database (PATSTAT). We

collapse all patents of the same family to the first filing of a given set of patent documents filed

in one or more countries and claiming the same invention. Each set containing one first and,

potentially, several subsequent filings is defined as a patent family.4 Worldwide patents can

be further split into internationally-oriented and domestically-oriented ones. Internationally-

oriented patent families refer to patents filed by applicants seeking patent protection in at

least one jurisdiction other than their country of residence. Domestic patent families refer

only to filings in a home country. While our analysis is based on the use of both types

of patents together, robustness checks in the appendix repeats all main regressions using

internationally-oriented patents only, which we use as an indicator of minimum quality of

the patent, allowing us to reduce noise related to the idiosyncrasy of each national patent

system. Miguelez et al. (2019) database provides geocoding information of patent documents,

4For a more extensive definition of patent families, see Martinez (2010).
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based on the inventors’ addresses (when possible).5 We then attribute all geocoded patent

data into Metropolitan Statistical Areas in the US and metropolitan regions for the case of

European countries.6 Data are available from 1976 to 2017, and we use the period from 1996

to 2015 to build four non-overlapping 5-year time windows.7 We then classify the patents in

technological classes according to the 4 digits IPC codes and focus the analysis on the classes

that appear in all the time windows.

For the migration variables, we use data from Miguelez and Fink (2013), who collect

Patent Cooperation Treaty (PCT) applications containing information on inventors’ nation-

ality. This has to do with the requirement under the PCT that only nationals or residents of

a PCT contracting state can file PCT applications. To verify that applicants meet at least

one of the two eligibility criteria, the PCT application form asks for both nationality and

residence. A limitation of this data is that we automatically exclude from the sample natu-

ralized inventors. However, they still give a more precise measure of inventors migration than

census data, that are generally available only every 10 years, and provide a skills breakdown

according to only three schooling levels. The database covers the period 1980-2010. Using

the period 1991-2010, we build four 5-year non-overlapping time windows. In the regressions

we introduce this variable with a 1-time window lag, in order to minimize issues of reverse

causality.8 Patent and inventor data from Miguelez and Fink (2013) are not provided at

the metropolitan area level. In order to get that, we combine it with the OECD REGPAT

database, where PCT patents are available at the NUTS3 and county levels (using inventors’

addresses) - that we then group into, respectively, European metro regions and MSAs. We

match both datasets using the available application number and the names of the inventors.

5Geocoded data originally collected from Bergquist et al. (2017); Yin and Motohashi (2018); Morrison
et al. (2017); de Rassenfosse et al. (2019), and PatentsView.org, among others.

6Metropolitan regions in Europe are defined as NUTS3 regions or a combination of
NUTS3 regions which represent all agglomerations of at least 250,000 inhabitants (see
https://ec.europa.eu/eurostat/web/metropolitan-regions/background, accessed January 2020).

7The 1991-1995 period will be occasionally used to build some explanatory variables.
8The choice of the 5-year time windows to compute our variables is customary in the related literature.

Results using slightly different time windows do not alter our results - provided upon request.
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As inventors are often associated with more than one technological class (because their

patents are, too), we prefer to group them into five technological areas (electrical engineering,

instruments, chemistry, process engineering and mechanical engineering) according to the

classification of Schmoch (2008). We do this in order to avoid fractionalizing head counts of

inventors, or duplicating them across technologies (patents commonly belong to more than

one technological class, IPC4, but are unlikely to belong to more than one technological

area). We then calculate how many inventors of a given nationality are working in a given

technological area in the metropolitan area of destination.9

As mentioned in the introduction, we restrict the analysis to the most common destina-

tion countries for migrant inventors, that is, the US, Germany, Switzerland, United Kingdom,

and France. Figure 1 shows the percentage of migrant inventors hosted by these five coun-

tries, showing that the US hosts 54 percent of the total. Focusing on these countries, we take

into account the 76 percent of the total inventor migration.

As it is shown in the next section, our main explanatory variables combine information on

the RTA index (built using information from all patent families) in destination cities, as well

as the uneven settlement of migrants in space. We exploit the metro region desegregation level

for European countries and MSAs for the US. This is possible since our database geocodes 80

percent of the total patent families at a fine geographical detail (Miguelez et al., 2019). Our

final sample consists of 137 countries of origin (24 high-income and 113 developing countries),

636 technological classes, 4 time windows and 447 metropolitan areas of destination.

Table 1 shows the main migration corridors for the US MSAs and European metropolitan

areas.10 For the US the main corridors are from China and India to San Diego, San José,

and Boston. In Europe corridors are dominated by intra-European flows, and the main

ones are from Germany to Zürich and Basel, from the Netherlands London and Paris, and

from France to London and Lausanne. In Table 2 we remove China and India as possible

9The correspondence between technological classes and technological areas is unique (Schmoch, 2008).
10Cross-country migration corridors are depicted in figure A3 in Appendix 2
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Figure 1: Migrant inventors stock

Source: Author’s calculations based on Miguelez and Fink (2013) data.

countries of origin for the US, and other high-income countries for European metropolitan

areas as possible origins. For the US the table shows that the main sources of migrant

inventors are from Canada and the United Kingdom and the most attractive MSAs remain

San Diego, San José, and Boston. For Europe, the main origin countries are India, China,

and Russia, and the most attractive metropolitan areas are London and Paris - refer to the

Appendix 2 for a detailed descriptive analysis.
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ü
d

w
ig

sh
a
fe

n
,

D
E

2
7
8

C
an

ad
a

S
an

F
ra

n
ci

sc
o,

C
A

11
4
4

U
n

it
ed

K
in

g
d

o
m

F
ra

n
k
fu

rt
A

m
M

a
in

,
D

E
2
7
2

S
o
u

rc
e:

A
u

th
o
rs

’
ca

lc
u

la
ti

o
n

s
b

a
se

d
o
n

M
ig

u
el

ez
a
n

d
F

in
k

(2
0
1
3
)

d
a
ta

a
n

d
O

E
C

D
R

E
G

P
A

T
d

a
ta

b
a
se

.

13



T
a
b

le
2
:

T
op

20
m

ig
ra

ti
on

co
rr

id
or

s,
20

00
-

20
09

:
n
o

In
d
ia

an
d

C
h
in

a
fo

r
th

e
U

S
,

on
ly

d
ev

el
op

in
g

co
u
n
tr

ie
s

fo
r

E
u
ro

p
e

U
n
it
e
d

S
ta

te
s

E
u
ro

p
e

O
ri
g
in

D
e
st
in
a
ti
o
n

In
v
e
n
to

rs
O
ri
g
in

D
e
st
in
a
ti
o
n

In
v
e
n
to

rs
C

an
ad

a
S

an
D

ie
go

,
C

A
18

4
5

In
d

ia
L

o
n

d
o
n

,
U

K
2
2
2

C
an

ad
a

B
os

to
n

-W
or

ce
st

er
,

M
A

18
1
8

C
h

in
a

L
o
n

d
o
n

,
U

K
1
9
7

C
an

ad
a

S
an

J
os

é,
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3.2 Empirical approach and variable construction

In order to explore the role of skilled diaspora on the technological diversification of mi-

grants’ home countries, we estimate the following regression, at the country-technology level,

that accounts for heterogeneity in destination countries by building our variables of interest

(migrants and relative specialization) exploiting information at the metropolitan level:

Yc,t,tw =αc,t,tw + β1Migrationc,t,tw−1 + β2Rel densc,t,tw−1 + β3Migrationc,t,tw−1∗

Rel densc,t,tw−1 + β4Controlsc,t,tw−1 + γc,tw + δt,tw + εc,t,tw

(1)

where we denote with c the inventors’ home countries, t the technological class (belonging

to one single technological area, ta), tw the time window.

β1 is the first coefficient of interest, that is associated with our main explanatory variable

- labelled Migration for simplicity. This is calculated at the origin country level as the sum

of the interactions between the number of migrants from country c working in technological

area ta in time window tw, resident in metropolitan area met, and a dummy R that takes the

value 1 if the metropolitan area of destination has a comparative advantage in technology t

(part of the technological area ta):

Migrationc,t,tw−1 =
∑
met

MIGc,met,ta,tw−1 ∗Rmet,t∈ta,tw−1 (2)

We consider that a metropolitan area met has a comparative advantage in technology t

if its relative specialization index is equal or greater than 1. The RTA of metropolitan areas
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is calculated as follows:

RTAmet,t,tw =

patmet,t,tw/
∑
t

patmet,tw∑
c

patt,tw/
∑
c

∑
t

pattw
(3)

where c refers to all countries.

The dependent variable is, for each specification, either the growth of number of patents

or the entry of a new technology. As measure of growth we use the compound average growth

rate (CAGR) in technology t for country c between the four years separating time window

tw and tw-1, conditional on pattw−1 > 0, that is:

Growthc,t,tw = (
patc,t,tw
patc,t,tw−1

)
1
4 − 1 if pattw−1 > 0 (4)

Entry of a new technology in a given country is computed as follows: first, we measure the

relative technological specialization for each country of origin, using the RTA:

RTAc,t,tw =

patc,t,tw/
∑
t

patc,tw∑
c

patt,tw/
∑
c

∑
t

pattw
(5)

where patc,t,tw is the number of patents that country c produced in technology t in time

window tw. The Entry proxy measures whether country c starts to develop a comparative

advantage in a new technology. The variable is a dummy that takes the value 1 if the RTA

of country c is smaller than 1 in technology t in time window tw-1 and equal or greater than

1 in time window t. When using Growth as dependent variable we introduce a control for

the total number of patents lagged one time window (Tot patc,t,tw−1 =
∑
t

patc,t,tw−1), while

when using Entry we control for the continuous value of the actual RTA, always at tw − 1.

Next, the main goal of this paper is to understand how knowledge remittances and relat-
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edness interplay in shaping the path of technological diversification of the countries of origin.

We compute relatedness density between technologies following Rigby (2015), Boschma et al.

(2015) and Balland et al. (2019), among others. First, we measure technological relatedness

counting the frequency with which technologies i and j appear on the same patent and nor-

malizing this count by total number of patents that record claims for i and j, in order to

avoid the influence of size effects - technological relatedness is recomputed from scratch for

every time window.11 The outcome is a t∗t network where the nodes are the technologies and

the links their degree of relatedness. We then generate a dummy variable that takes the value

1 if the degree of relatedness of two technologies is ≥ 1. We then calculate the relatedness

density, that measures the relatedness of the technology of interest to the set of technologies

in which the country is already specialized. This measure is derived from the technological

relatedness (φi,j) of technology i to all the technologies j in which the country has relative

specialization index > 1 (Equation 5), divided by the sum of technological relatedness of

technology i to all the other technologies j:

Rel densc,t,tw−1 =

∑
j∈c,j 6=i,tw−1 φi,j,tw−1∑

j 6=i φi,j,tw−1

∗ 100 (6)

We then introduce in equation 1 an interaction variable between migration and relat-

edness density. A positive coefficient associated with this variable would suggest that relat-

edness reinforces the effect of knowledge remittances, confirming that knowledge brought in

from abroad requires absorptive capacity to be understood (Cohen and Levinthal, 1990). On

the other hand, a negative coefficient would imply that knowledge remittances act as substi-

tute for relatedness, helping to diversify beyond the set of countries’ technological capabilities

and preventing the risk of lock-in.

This specification can incur in endogeneity issues due to omitted variables, reverse causal-

ity, and measurement error. We partially address the omitted variables issue including coun-

11Using the association measure presented in Eck and Waltman (2009).
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try per time (δc,tw) and technology per time (δt,tw) fixed effects, that allow us to control for

time-variant characteristics that may correlate with both migration and diversification (such

as the relative size of a technological class or country income). Yet, the choice of destinations

of foreign inventors might be correlated with dynamics of specialization at both origin and

destination. Bahar and Rapoport (2018) and Bahar et al. (2020) address this issue introduc-

ing a control for bilateral trade and FDI. A weakness of these measures is that they are not

technology-specific and consider the overall bilateral flows. In our specification we introduce

an alternative control, that is the total number of collaborative patents between the migrants’

country of origin c and the metropolitan area of destination met in technology t in which

the city of destination is specialized (RTAmet,t,tw ≥ 1):

Copatentsc,t,tw−1 =
∑

Patc,met,t,tw−1 ∗Rmet,t,tw−1 (7)

In this way, we control for innovative collaborative activities between origin and destination

that may drive inventors relocation.12

Next, lagging the variables of interest by one time window to minimize reverse causality

does not completely resolve the issue, as both migration at time tw-1 and diversification

at time tw could be affected by long-term human capital investments in sending countries.

We address these concerns by implementing an IV strategy. Following Frankel and Romer

(1999), Ortega and Peri (2014) and Bahar and Rapoport (2018) we estimate a gravity model

to compute predicted bilateral migration flows as follows:

12We are aware that our Copatents variable is not a substitute for bilateral trade and FDIs. Table A3 in
Appendix 3 presents the results when we add trade and FDI instead of Copatents. The results are robust to
this alternative estimation.
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Migrantsc,met,tw =αc,t,tw + β1Mig less skilledc,dc,tw ∗ share popmet∈dc,1980 + β2Distancemet∈dc,c

+ β3Contiguitymet∈dc,c + β4Colonydc,c + β5Common languagedc,c

+ β6Common religiondc,c + γmet + ωc + δtw + εc,t,tw

(8)

where the left hand side is the actual stock of migrant inventors from country c in

metropolitan area met in time window tw. To ensure the exogeneity of our predictions, on

the right-hand side we control for cultural proximity between origins and destinations. We

introduce three dummy variables at the country level: Colonydc,c indicating whether the two

countries ever had a colony-coloniser relationship, Common languagedc,c whether the two

countries share the same language, and Common religiondc,c whether they share the same

religion. The data come from the CEPII Gravity dataset. To introduce variability at the

metropolitan area level, we introduce a dummy indicating whether the metropolitan area of

destination and the country of origin share a border Contiguitymet∈dc,c. We also introduce

the straight line distance between the metropolitan areas of destination and the countries of

origin (Distancemet∈dc,c). Finally, we proxy pre-existent diasporas at destination multiplying

the stocks of less skilled immigrants Mig less skilled by origin country c, in destination

country dc and time window tw with the population shares share pop of metropolitan area

met in a destination country dc. Data for unskilled migrants come from the Institute for Em-

ployment Research (IAB) and population data for metropolitan areas come from the History

Database of the Global Environment (HYDE). Due to the high number of zeros in our de-

pendent variable and its count nature, we estimate the equation by means of Pseudo-Poisson

Maximum Likelihood (PPML) (Silva and Tenreyro, 2006). Once we estimate the predicted

migration flows, we multiply them by a fixed value of R, based on the RTAs of metropolitan

areas in the pre-sample period 1981-1985, that takes the value 1 if the metropolitan area of

destination had a relative advantage in the technology under consideration, and finally we
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sum them up at the country level:

IVc,t,tw =
∑
met

̂Migrantsc,met,tw ∗Rmet,t,1981 1985 (9)

Moreover, since our main variable of interest is the sum of the product between spe-

cialization at destination and the number of migrants, we provide two falsification tests to

rule out the possibility that our results are driven by only one of these dynamics. First, to

verify that our results are not only driven by specialization at destination, we substitute the

actual migration variable by randomizing the number of migrants. Second, to confirm that

specialization at destination matters, we change the meaning of the dummy R that this time

takes the value 1 if the metropolitan area of destination met does not have a comparative

advantage in technology t.

To compute Growth and the various RTAs we use fractional counting, meaning that if

a patent belongs to a number x of technologies (locations), it will be counted proportionally

per technology (location): 1/x. We transform Migration and Copatents using the inverse

hyperbolic sine, a linear monotonic transformation similar to a logarithmic one, except that

it is defined at zero (MacKinnon and Magee, 1990).

Table 3 presents basic descriptive statistics for the dependent variables, the variables of

interest, and the control variables, firstly all together and then by type of country of origin.

Not surprisingly, the average values in Table 3 witness a gap between developing countries

and high-income economies in patenting activity. Also, the average number of collaborative

patents is higher for high-income countries. Concerning migration, we notice that developing

countries present a lower mean value but a higher maximum value, suggesting that migrants

from developing countries may be more concentrated. Table A4 in the appendix presents

the correlation matrix which shows that no concerns on collinearity are present. We add all

these variables parsimoniously (in unreported results), to be sure that collinearity does not
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drive our results.

4 Results

4.1 Baseline results

Table 4 estimates our main regressions on the pooled sample. As discussed earlier, our

focal variable, Migration, is computed as the sum of the interactions between the number of

migrants from country c working in technological area ta in time window tw and a dummy

R that takes the value 1 if the metropolitan area of destination has a comparative advantage

in technology t, part of the technological area ta.

In columns 1-3 we use the growth in the number of patents per technological class as

the dependent variable. The coefficients of Migration and Relatedness density are positive

and statistically significant in all the specifications, while the interaction between these two

variables presents a negative and significant coefficient. The coefficient for the number of

collaborative patents is negative and significant at the one percent level. This result is

somewhat counterintuitive. A potential explanation is that, as international collaborations

mainly happen among a subset of countries, the variable is highly skewed and the coefficient

reflects a spurious relationship due to the collinearity with the country-time fixed effects.

These results suggest that the presence of a high-skilled diaspora working in a destination

specialized in a given technology has a positive impact on the number of patents that the

country of origin files in that technology in the next five years. More specifically, doubling

the number of migrant inventors working in a metropolitan area specialized in technology

t increases the total number of patents filed in the country of origin in that technology by

3.7 percent. Although the coefficient may seem small, it is worth noting that a twofold

increase implies a moderate number of inventors, as the average number of migrant inventors

for the Growth sample is 158.86 (Table 3). Moreover, the negative coefficient associated

with the interaction between migration and relatedness density (Mig ∗ rel) suggests that the
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effect is stronger for technologies with lower degrees of relatedness, implying that knowledge

remittances may act as substitute for relatedness. When Rel dens is equal to the mean,

doubling the stock of migrants increases the total number of patents filed by 1.1%. The

effect of Migration is either positive or non-significant for 90% of the observations.13

Results are similar in columns 4-6 for the case of Entry, our proxy of technological

change, where we find a positive and statistically significant coefficient for migration and

relatedness density, and a negative and significant coefficient for the interaction between

the two. In this case, doubling the number of migrant inventors working in a metropolitan

area specialized in technology t increases the probability that the country of origin starts to

specialize in that technology by 6.5 percent. Note that in this sample the average number

of migrant inventors is 44.44, suggesting that a relatively small increase in the number of

inventors working abroad has a positive and highly significant effect on the probability of

entry of a new technology in the country of origin. Here again, the negative coefficient

associated to the interaction between migration and relatedness density implies that this

effect specifically holds for technologies with a low degree of relatedness density, suggesting

that having a high skilled diaspora helps the country of origin to diversify in technologies

that will, otherwise, be unlikely to appear. Comparing our results to Bahar et al. (2020),

we see that their equivalent coefficient is not always significant, which we attribute to the

territorial breakdown by metro areas in destination countries we do.14

Doubling the stock of immigrants when Rel dens is equal to the mean increases the

probability of entering in a new technology by 4%. The effect of Migration is positive and

significant for the 75%, and either positive or non-significant for the 90% of the observations.15

In Table 5, we split the sample into developing and high-income countries. We notice

13The additional computations are available upon request.
14We repeat our baseline results in table A5 without breaking down migration and specialization data by

metropolitan areas in our 5 destination countries. Interestingly, results barely hold, suggesting how important
is to account for territorial differences in specialization and migration patterns.

15The additional computations are available upon request.
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that when isolating the group of high-income countries, the coefficients of Migration is

only significant at the 10 percent level in the Growth sample, while the interaction between

migration and relatedness density is never significant, for both our dependent variables. On

the other hand, the results on developing countries largely confirm the ones on the pooled

sample. This suggests that, for this group of countries, a twofold increase in the number of

migrant inventors working in a metropolitan area specialized in technology t increases the

total number of patents filed in the country of origin by 5.2 percent and the probability

that the country starts to specialize in that technology by 7 percent. This last result is

particularly significant since, on average, as for the pooled sample, a twofold increase on

the number of inventors working abroad implies a relative small number of people (22.93).

The negative sign of the interaction between migration and relatedness density confirms that

the effect specifically holds for technologies with a low degree of relatedness density and

that knowledge remittances to developing countries act as a substitute for the presence of

absorptive capacity. Appendix 6 digs deeper into the analysis of migration and relatedness

across income levels by plotting the interaction of our focal variables with GDP per capita.

The evidence presented there is coherent with the results shown when splitting the sample

according to the income level.

24



Table 4: Pooled sample

Growth Entry

(1) (2) (3) (4) (5) (6)

Migration 0.0097*** 0.0368*** 0.0367*** 0.0017* 0.0066*** 0.0065***

(0.0027) (0.0058) (0.0057) (0.0008) (0.0011) (0.0011)

Rel dens 0.0057*** 0.0089*** 0.0087*** 0.0011*** 0.0017*** 0.0015***

(0.0004) (0.0007) (0.0007) (0.0002) (0.0002) (0.0002)

Mig*rel -0.0007*** -0.0007*** -0.0002*** -0.0001***

(0.0001) (0.0001) (0.0000) (0.0000)

Copatents -0.0104** -0.0217***

(0.0035) (0.0018)

Tot pat -0.1295*** -0.1292*** -0.1263***

(0.0064) (0.0063) (0.0065)

RTA -0.0002*** -0.0002*** -0.0002***

(0.0001) (0.0001) (0.0001)

Country per time FE Yes Yes Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes Yes Yes

Observations 93494 93494 93494 318000 318000 318000

R-squared 0.4427 0.4447 0.4450 0.0641 0.0645 0.0661

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. All RHS

variables are lagged of one time window. Migration, Tot pat, and Copatents are transformed using the inverse hyperbolic

sine.
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Table 5: Developing and high-income

Growth

High-income Developing

(1) (2) (3) (4) (5) (6)

Migration 0.0093** 0.0187* 0.0187* 0.0141** 0.0516*** 0.0515***

(0.0031) (0.0072) (0.0073) (0.0049) (0.0070) (0.0071)

Rel dens 0.0044*** 0.0056*** 0.0056*** 0.0066*** 0.0106*** 0.0105***

(0.0005) (0.0010) (0.0010) (0.0009) (0.0008) (0.0008)

Mig*rel -0.0003 -0.0003 -0.0011*** -0.0011***

(0.0001) (0.0002) (0.0002) (0.0002)

Copatents 0.0005 -0.0212

(0.0038) (0.0121)

Tot pat -0.1181*** -0.1184*** -0.1185*** -0.1408*** -0.1391*** -0.1379***

(0.0089) (0.0090) (0.0089) (0.0086) (0.0085) (0.0087)

Country per time FE Yes Yes Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes Yes Yes

Observations 51489 51489 51489 41967 41967 41967

R-squared 0.3250 0.3254 0.3254 0.4842 0.4872 0.4874

Entry

High-income Developing

(1) (2) (3) (4) (5) (6)

Migration 0.0020 0.0050 0.0049 0.0033*** 0.0070*** 0.0070***

(0.0023) (0.0046) (0.0045) (0.0008) (0.0012) (0.0012)

Rel dens 0.0009*** 0.0013** 0.0013** 0.0014*** 0.0019*** 0.0018***

(0.0002) (0.0004) (0.0004) (0.0003) (0.0003) (0.0003)

Mig*rel -0.0001 -0.0001 -0.0002*** -0.0002***

(0.0001) (0.0001) (0.0000) (0.0000)

Copatents -0.0036 -0.0281***

(0.0026) (0.0074)

RTA -0.0044** -0.0044** -0.0044** -0.0002*** -0.0002*** -0.0002***

(0.0013) (0.0013) (0.0013) (0.0000) (0.0000) (0.0000)

Country per time FE Yes Yes Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes Yes Yes

Observations 63600 63600 63600 254400 254400 254400

R-squared 0.0707 0.0708 0.0709 0.0804 0.0807 0.0811

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

All RHS variables are lagged of one time window. Migration, Tot pat, and Copatents are transformed using

the inverse hyperbolic sine.
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4.2 Instrumental Variables

Tables 6 and 7 present the results for the IV strategy respectively on the pooled sample and

separately on developing and high income countries.16 We report the Kleibergen-Paap F

statistics for all the estimations to test if our instrument is weak. As the values are always

larger than 10 - and most of the cases larger than 100 (Lee et al., 2020), we are confident that

there are no reasons for concern. The IV estimations largely confirm our baseline results,

suggesting a positive and significant relationship between inventor migration and home coun-

tries technological diversification for the pooled sample and for developing countries. Next,

as in the baseline results, we find a negative coefficient associated to the interaction between

migration and relatedness, suggesting a substitution effect between external knowledge flows

and developing related activities.

The magnitude of the coefficients for the IV specifications is slightly smaller when con-

sidering Entry in the pooled sample regression and between 0.5 and two times larger for the

rest of the estimations. As we hypothesize endogeneity to be driven by reverse causality, we

would have expected our OLS coefficients to be biased upwards. We believe that there might

be substantial reasons behind the downward bias in OLS estimates. First, as MNCs are

important drivers of the international mobility of these skilled workers (international recruit-

ment, cross-country transfers, etc.), they possibly internalize some of the gains and spillovers

migrants produce (Ganguli, 2015). As our analysis aggregates the data by country-areas, we

cannot break down the reinforcing effect of migration and MNCs, as found in Breschi et al.

(2017). Second, skilled migration and proximity (geographical and others) tend to be sub-

stitutes (Oettl and Agrawal, 2008; Breschi et al., 2017). If this is the case, skilled people will

tend to move to places where knowledge flows are more scarce, precisely because these flows

cannot be accessed in any other way (e.g., between high-income and developing economies).

In this scenario OLS estimates would underestimate the true relationship due to a negative

correlation between migration and the errors.

16Table A6 presents the results for the first stage.
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Table 6: IV estimations

(OLS) (IV)

(1) (2) (3) (4)

Growth Entry Growth Entry

Migration 0.0367*** 0.0065*** 0.0702*** 0.0059**

(0.0057) (0.0011) (0.0118) (0.0026)

Rel dens 0.0087*** 0.0015*** 0.0107*** 0.0015***

(0.0007) (0.0002) (0.0010) (0.0003)

Mig*rel -0.0007*** -0.0001*** -0.0012*** -0.0001**

(0.0001) (0.0000) (0.0002) (0.0001)

Country per time FE Yes Yes Yes Yes

Technology per time FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Observations 93494 318000 93494 318000

R-squared 0.4450 0.0661 0.4437 0.0661

Underidentification test 0.000 0.000

Kleibergen-Paap statistics 110.176 460.413

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, ** p < 0.05,

*** p < 0.01. Estimations reported in Column 1 and 3 include Tot pat and Copatents as

controls, while estimations in Column 2 and 4 include RTA and Copatents. All RHS variables

are lagged of one time window. Migration, Tot pat, and Copatents are transformed using the

inverse hyperbolic sine transformation.
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Table 7: IV estimations - developing and high-income

Developing
(OLS) (IV)

(1) (2) (3) (4)
Growth Entry Growth Entry

Migration 0.0515*** 0.0070*** 0.0703*** 0.0102***
(0.0071) (0.0012) (0.0142) (0.0024)

Rel dens 0.0105*** 0.0018*** 0.0114*** 0.0019***
(0.0008) (0.0003) (0.0010) (0.0003)

Mig*rel -0.0011*** -0.0002*** -0.0014*** -0.0002***
(0.0002) (0.0000) (0.0003) (0.0001)

Country per time FE Yes Yes Yes
Technology per time FE Yes Yes Yes
Controls Yes Yes Yes
Observations 41967 254400 41967 254400
R-squared 0.4874 0.0811 0.4877 0.0810
Underidentification test 0.000 0.000
Kleibergen-Paap statistics 59.995 351.053

High-income
(OLS) (IV)

(1) (2) (3) (4)
Growth Entry Growth Entry

Migration 0.0187* 0.0049 0.0558* -0.0039
(0.0073) (0.0045) (0.0246) (0.0174)

Rel dens 0.0056*** 0.0013** 0.0080*** 0.0007
(0.0010) (0.0004) (0.0021) (0.0011)

Mig*rel -0.0003 -0.0001 -0.0008* 0.0001
(0.0002) (0.0001) (0.0004) (0.0003)

Country per time FE Yes Yes Yes Yes
Technology per time FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Observations 51489 63600 51489 63600
R-squared 0.3254 0.0709 0.3223 0.0706
Underidentification test 0.001 0.000
Kleibergen-Paap statistics 51.258 66.456

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, ** p < 0.05, ***
p < 0.01. Estimations reported in Column 1 and 3 include Tot pat and Copatents as controls,
while estimations in Column 2 and 4 include RTA and Copatents. All RHS variables are lagged of
one time window. Migration, Tot pat, and Copatents are transformed using the inverse hyperbolic
sine transformation.
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4.3 Falsification tests

We also run two falsification tests. First, to rule out that our results are only driven by

specializations in the metropolitan area of destination, we estimate two random models that

randomize the stock of migrants 500 times (Bahar et al., 2020). In the first model we use a

uniform distribution, while in the second model we shuffle the real number of migrants so to

obtain a random variable with the same distribution of the original one. Figure 2 presents

the results for the first model, which clearly shows that none of the estimated coefficients

using the random variable is statistically significant, both for Migration and the interaction

between Migration and Rel dens. Figure 3 shows the results for the second model and

also in this case the vast majority of coefficients estimated using the random variable is not

significant (the number of significant coefficients ranges from 1 to 13).

Second, to rule out that the impact is only driven by migrant inventors stocks, we

replicate the main specification reversing the sense of the dummy variable R that takes the

value 1 if the metropolitan area of destination has 0 patents in technology t. Thus, our main

variable of interest is the sum of the interactions between the actual number of migrants from

country c working in technological area ta in time window tw and the dummy R that takes

the value 1 if the RTA of the metropolitan area of destination is equal to 0 in technology t.

Table 8 presents the results. We find that the coefficient of Migration is not significant in all

the specifications. On the other hand, some coefficients for the interaction between migration

and relatedness density are significant, but positive, which we attribute to spillovers brought

in by emigrants in different, but related technologies.
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Figure 2: Random model 1

(a) Growth (b) Entry

(c) Growth (d) Entry

Notes:Summary of 500 estimations using random inventor figures (OLS). Figures a and b plot the estimators of β1Migration
from the baseline equation when substituting the real number of migrant inventors between countries with a random one, for

each of 500 iterations. Figures c and d repeat the same exercise and plot the estimators of β3Mig ∗ rel.The figure is based on a
randomization approach that replaces the actual number of inventors with a random number, with no restrictions distributed
uniformly from 0 to 1. The figure also includes, for reference, the estimation using the actual number of migrant inventors (in

blue). Whiskers represent 95% confidence intervals, based on SE clustered at the country level.
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Figure 3: Random model 2

(a) Growth (b) Entry

(c) Growth (d) Entry

Notes:Summary of 500 estimations using random inventor figures (OLS). Figures a and b plot the estimators of β1Migration
from the baseline equation when substituting the real number of migrant inventors between countries with a random one, for

each of 500 iterations. Figures c and d repeat the same exercise and plot the estimators of β3Mig ∗ rel. The figure is based on
a randomization approach such that the real and the random number of inventors have the same sample mean and

distribution. The figure also includes, for reference, the estimation using the actual number of migrant inventors (in blue).
Whiskers represent 95% confidence intervals, based on SE clustered at the country level.
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Table 8: Falsification test 2: R=1 if RTA = 0

(Growth) (Entry)

Pooled High-income Developing Pooled High-income Developing

(1) (2) (3) (4) (5) (6)

Migration (R=1 if RTA = 0) 0.00515 -0.00284 0.00900 -0.000625 -0.00164 -0.00376*

(0.00530) (0.00532) (0.0123) (0.00187) (0.00321) (0.00222)

Rel dens 0.00578*** 0.00359*** 0.00781*** 0.000487** 0.000447 0.00103***

(0.000486) (0.000449) (0.000733) (0.000197) (0.000375) (0.000297)

Mig*rel -0.0000484 0.000253** -0.000455* 0.000214*** 0.000150* 0.000157**

(0.000108) (0.0000951) (0.000246) (0.0000515) (0.0000773) (0.0000718)

Controls Yes Yes Yes Yes Yes Yes

Country per time FE Yes Yes Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes Yes Yes

Observations 93494 51489 41967 318000 63600 254400

R-squared 0.443 0.325 0.485 0.0666 0.0711 0.0808

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Estimations

reported in Column 1-3 include Tot pat and Copatents as controls, while estimations in Column 2-4 include RTA and

Copatents. All RHS variables are lagged of one time window. Migration, Tot pat, and Copatents are transformed using

the inverse hyperbolic sine.

33



4.4 International inventions

So far, we computed our measure of growth and technological change on all patent families

regardless of the quality of inventions. To consider this latter element, we replicate the

analysis restricting the sample only to internationally oriented patents - around 25 percent

of the total, which we define as those whose families include applications to several countries’

patent offices as well as those including applications in just one country, but filed by foreign

firms (the patent applicant’s country, as per its address, does not coincide with that of

the patent office). The underlying hypothesis is that since the procedure to protect an idea

internationally is particularly costly, these inventions represent the most valuable ones. Thus,

we analyze the effect of knowledge flows on the development of high-quality inventions.

Table A7 in the on-line appendix provides the results for the pooled sample, confirming

the results of Table 4. Concerning Growth, results confirm the magnitude of the Migration’s

coefficient, that remains quite stable with a slight increase (0.1 percent), while for Entry we

notice a slight decrease from 0.7 to 0.5. In Table A8 we split the sample into developing and

high-income countries. Also in this case the results are similar to Table 5, with the exception

that we find a significant coefficient of Migration and the interaction on the sample of hig-

income countries when using Growth as dependent variable. The magnitude of the coefficient

(2.1) is lower than for developing countries (5.2). Overall, we can conclude that the results

are confirmed when we restrict the sample to international inventions only.

4.5 Further robustness checks

To assess the robustness of our results, we run a number of alternative estimations. Appendix

9 mitigates concerns on our results being driven by a group of outliers by replicating the

analysis excluding the countries with the most sizeable diaspora, namely China (Table A10)

and India (Table A11). In the same spirit, we exclude the US as destination country (Table

A12). Following Bahar and Rapoport (2018) and Bahar et al. (2020), we test the robustness of
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our results including additional controls for bilateral trade and FDI (Table A3). Appendix 10

is dedicated to the estimations with alternative dependent variables. In Table A13, to address

concerns on possible reverse causality, we run the estimations by excluding international

collaborations from the dependent variable. Following the same logic, in Table A14 we

exclude PCT applications. In Table A15 presented in Appendix 11, we transform our main

variables of interest using a regular logarithmic transformation, which exclude zero cells from

our estimations. Finally, in Table A16 of Appendix 12 we compute migrant inventors at the

IPC4 level. Most of our results and conclusions hold for all the specifications.

5 Conclusions

In this paper we analyze the relationship between high-skilled migration and the technologi-

cal diversification of the migrants’ countries of origin. In particular, we investigate whether

migrant inventors transfer productive knowledge back home and encourage development of

new technologies in which the destination areas are specialized. One of the main novelty of

this paper is that we take into account the uneven distribution of knowledge and the con-

sequent migrants’ concentration at destination (Carlino and Kerr, 2015) by breaking down

at the metropolitan area level the way in which our focal explanatory variables are com-

puted. Also, we aim at understanding whether the transfers of knowledge from abroad foster

unrelated diversification, allowing the country of origin to extend the set of technological

capabilities and preventing lock-in. As technological development is a strong predictor of

economic and social development (Hidalgo et al., 2007; Hartmann et al., 2017), we specifi-

cally focus on developing countries and on the most common destinations, that is, the US,

Germany, United Kingdom, Switzerland and France.

Our results suggest a positive and statistically significant effect of high-skilled migration

on the direction of technical change back home. More importantly, we find that external

knowledge from abroad is particularly beneficial for the development of technologies with
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a low degree of relatedness, thus fostering unrelated diversification in the home countries,

thus promoting technological structural change (Neffke et al., 2018). Our results are con-

firmed when we restrict the sample to international inventions only and are robust to several

alternative specifications and instrumental variables.

Next, we also find that our results are critical for developing countries’ innovation and

diversification. That is, having a high-skilled diaspora helps developing economies to access

foreign knowledge and catching-up with countries at the technological frontier. Moreover, fos-

tering unrelated diversification, knowledge remittances help developing countries to prevent

the risk of lock-in and promote long-term development (Saviotti and Frenken, 2008).

Our data provide detailed information on the localization of a great number of world-

wide patent families. Yet, they do not allow us to identify the specific channel through which

migrants transfer knowledge from destination areas to their home countries. We hypoth-

esized that high-skilled migrants keep contacts with their countries of origin and transfer

the knowledge acquired at destination to their social networks back in the country of origin.

They may return back home, on a permanent or temporary basis, after some time abroad,

with new skills and contacts. Future research, possibly at the micro-level, could investigate

the specific mechanisms behind our results.

The focus of our analysis is on technological development. However, we did not investi-

gate to which extent it translates into new production and export capacity for the migrants’

countries of origin. This open question may guide further research aimed at understanding

the role of knowledge flows in connecting technological and economic diversification.
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Appendix

Appendix 1 List of countries in the sample

• Developing countries: Albania, Algeria, Argentina, Armenia, Azerbaijan, Bangladesh,

Belarus, Belize, Benin , Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Bulgaria,

Burkina Faso, Burundi, Cambodia, Cameroon, Central African Republic, Chad, Chile,

China, Colombia, Congo, Costa Rica, Cuba, Cote d’Ivoire, Democratic People’s Repub-

lic of Korea, Democratic Republic of the Congo, Dominican Republic, Ecuador, Egypt,

El Salvador, Ethiopia, Gabon, Georgia, Ghana, Guatemala, Guinea, Guinea-Bissau ,

Haiti, Honduras, India, Indonesia, Iran, Iraq, Jamaica, Jordan, Kazakhstan, Kenya,

Kyrgyzstan, Lao People’s Democratic Republic, Latvia, Lebanon, Liberia, Lithuania,

Madagascar, Malawi, Malaysia, Mali, Mauritania, Mexico, Mongolia, Montenegro, Mo-

rocco, Mozambique, Myanmar, Namibia, Nepal, Nicaragua, Niger, Nigeria, Pakistan,

Panama, Papua New Guinea, Paraguay, Peru, Philippine, Republic of Moldova, Ro-

mania, Russian Federation, Rwanda, Senegal, Serbia, Sierra Leone, South Africa, Sri

Lanka, Sudan, Suriname, Swaziland, Syrian Arab Republic, T F Y R of Macedonia,

Tajikistan, Thailand, Togo, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, United

Republic of Tanzania, Uruguay, Uzbekistan, Venezuela, Viet Nam, Yemen, Zambia,

Zimbabwe.

• High-income countries: Australia, Austria, Belgium, Canada, Denmark, Finland,

France, Germany, Greece, Iceland, Ireland, Israel, Italy, Japan, Luxembourg, Nether-

lands, New Zealand, Norway, Portugal, Republic of Korea, Spain, Sweden, Switzerland,

United Kingdom, United States of America.

45



Appendix 2 Additional descriptive statistics

Figure A1: Migrant inventors stocks

Source: Author’s calculations based on Miguelez and Fink (2013) data.
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Figure A2: Trends over time

Source: Author’s calculations based on Miguelez and Fink (2013) data.
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Figure A3: Top cross-country migration corridors

Source: Author’s calculations based on Miguelez and Fink (2013) data.
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Table A1: Top-20 MSA with more immigrants and top-20 MSA with largest
share of immigrants, 2000 - 2009

Tot immigrant inventors Share of immigrant inventors
San José, CA 19123 San Diego, CA 0.352
San Diego, CA 18870 Evansville-Henderson, IN 0.323
Boston-Worcester, MA 15247 San José, CA 0.313
San Francisco, CA 8515 Trenton, NJ 0.294
Oakland, CA 6255 Champaign-Urbana, IL 0.288
Chicago, IL 5565 Middlesex-Somerset, NJ 0.287
New York-Newark, NY-NJ-PA 4983 New Albany-Schenectady-Troy, NY 0.284
Middlesex-Somerset, NJ 4463 Gainesville, FL 0.254
Philadelphia, PA-NJ 4427 Yolo, CA 0.254
Houston, TX 4175 Dallas, TX 0.254
New Haven-Bridgeport, CT 4129 New Haven-Bridgeport, CT 0.252
Newark, NJ 3900 New York-Newark, NY-NJ-PA 0.245
Los Angeles-Long Beach, CA 3857 Dutchess County, NY 0.239
Washington, DC-MD-VA-WV 3649 Santa Barbara - Santa Maria, CA 0.233
Raleigh-Durham-Chapel Hill, NC 3127 San Francisco, CA 0.228
Dallas, TX 2862 Oakland, CA 0.226
Minneapolis-St. Paul, MN-WI 2622 Ann Harbor, MI 0.213
Seattle-Bellevue-Everett, WA 2564 Boston-Worcester, MA 0.211
Trenton, NJ 2117 State College, PA 0.210
Orange County, CA 2059 Bergen-Pessaic, NJ 0.206

Source: Author’s calculations based on Miguelez and Fink (2013) data and OECD REGPAT database.
Notes: In the second column we only include MSAs with at least 1000 inventors.
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Table A2: Top-20 metro regions with more immigrants, and top-20
metro-regions with largest share of immigrants, 2000 - 2009

Tot immigrant inventors Share of immigrant inventors
London, UK 6936 Genéve, CH 0.479
Basel, CH 4251 Lausanne, CH 0.450
Paris, FR 4222 Zürich, CH 0.385
Zurich, CH 3526 Basel 0.330
Lausanne, CH 2595 Southampton, UK 0.0.221
München, DE 2474 London, UK 0.209
Mannheim-Lüdwigshafen, DE 2371 Edinburgh, UK 0.182
Cambridge, UK 1882 Cambridge, UK 0.176
Frankfurt Am Main, DE 1493 Sheffield, UK 0.159
Stuttgart, DE 1322 Bern, CH 0.142
Heidelberg, DE 1147 Birmingham, UK 0.138
Düsseldorf, UK 1108 Mulhouse, FR 0.132
Berlin, DE 971 Strasbourg, FR 0.127
Genéve, CH 916 Newcastle Upon Tyne, UK 0.113
Köln, DE 739 Reading, UK 0.113
Nürnberg, DE 696 Mannheim-Lüdwigshafen, DE 0.105
Ruhrgebiet, DE 637 Glasgow, UK 0.103
Reading, UK 545 Aberdeen, UK 0.102
Lyon, FR 531 Halle an der Saale, DE 0.096
Grenoble, FR 526 Nice, FR 0.096

Source: Author’s calculations based on Miguelez and Fink (2013) data and OECD REGPAT
database. Notes: In the second column we only include metropolitan areas with at least 1000
inventors.
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Appendix 3 Including additional controls

Table A3: Estimations including trade and FDI

(Growth) (Entry)

Pooled High-income Developing Pooled High-income Developing

(1) (2) (3) (4) (5) (6)

Migration 0.0368*** 0.0186** 0.0516*** 0.00663*** 0.00501 0.00705***

(0.00576) (0.00720) (0.00698) (0.00108) (0.00460) (0.00117)

Rel dens 0.00887*** 0.00555*** 0.0106*** 0.00173*** 0.00128** 0.00186***

(0.000690) (0.00102) (0.000793) (0.000183) (0.000406) (0.000270)

Mig*rel -0.000749*** -0.000254 -0.00109*** -0.000195*** -0.0000831 -0.000195***

(0.000120) (0.000149) (0.000175) (0.0000309) (0.0000854) (0.0000467)

Trade 0.000788 0.0000398 0.00128 -0.000103 -0.0000497 -0.000176

(0.000652) (0.000577) (0.00125) (0.000239) (0.000786) (0.000228)

FDI -0.000416 0.00153 -0.00171 -0.00120 -0.000366 -0.000816

(0.00178) (0.00154) (0.00477) (0.000952) (0.00195) (0.00117)

Tot pat -0.129*** -0.118*** -0.139***

(0.00630) (0.00895) (0.00847)

RTA -0.000200*** -0.00442** -0.000158***

(0.0000543) (0.00127) (0.0000445)

Country per time FE Yes Yes Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes Yes Yes

Observations 93494 51489 41967 318000 63600 254400

R-squared 0.445 0.325 0.487 0.0645 0.0708 0.0807

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. All RHS

variables are lagged of one time window. Migration, Tot pat, Copatents, Trade, and FDI are transformed using the

inverse hyperbolic sine.
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Appendix 4 Correlation matrix

Table A4: Correlation matrix

Variables Migration Rel dens Copatents Tot pat RTA

Migration 1.000

Rel dens 0.151 1.000

Copatents 0.166 0.0713 1.000

Tot pat 0.115 0.097 0.252 1.000

RTA 0.001 0.018 0.000 0.001 1.000
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Appendix 5 Estimations with RHS at the country level

Table A5: RHS at the country level

(Growth) (Entry)

Pooled High-income Developing Pooled High-income Developing

(1) (2) (3) (4) (5) (6)

Migration 0.0074* 0.0096* 0.0036 -0.0003 -0.0004 -0.0019

(0.0027) (0.0046) (0.0025) (0.0008) (0.0008) (0.0029)

Rel dens 0.0058*** 0.0068*** 0.0046*** 0.0011*** 0.0014*** 0.0010***

(0.0005) (0.0009) (0.0005) (0.0002) (0.0003) (0.0002)

Mig*rel -0.0001* -0.0002 -0.0001 -0.0000 0.0000 0.0000

(0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0001)

Copatents -0.0104** 0.0034 -0.0017 -0.0216*** -0.0498*** -0.0015

(0.0039) (0.0087) (0.0045) (0.0020) (0.0097) (0.0025)

Tot pat -0.1272*** -0.1399*** -0.1197***

(0.0065) (0.0085) (0.0093)

RTA -0.0002*** -0.0002*** -0.0044**

(0.0001) (0.0000) (0.0013)

Country per time FE Yes Yes Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes Yes Yes

Observations 93494 51489 41967 318000 63600 254400

R-squared 0.4385 0.4839 0.3134 0.0659 0.0806 0.0739

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

All RHS variables are lagged of one time window. Migration, Tot pat, and Copatents are transformed using the

inverse hyperbolic sine.
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Appendix 6 Interactions with GDP

In this section we expand our analysis on differences across levels of development by inter-

acting our main variables with real GDP per capita. To introduce this new variable we use

data from the World Bank. Figure A4 plots the estimation results of the following equation

where we add the interaction between Migration and GDP pc:

Yc,t,tw =αc,t,tw + β1Migrationc,t,tw−1 + β2Rel densc,t,tw−1 + β3GPD pcc,tw−1 + β4Controlsc,t,tw−1

+ β5Migrationc,t,tw−1 ∗Rel densc,t,tw−1 + β6Migrationc,t,tw−1 ∗GPD pcc,tw−1+

γc + δt,tw + εc,t,tw

(10)

Figure A4 show that the effect of the interaction between GDP per capita and Migration

on Entry is at maximum for the first income decile. Although the confidence interval suggests

that the estimations are not very precise, it is worth noticing that the lower band is well above

zero, and above to the lower band of the 4th and 5th income decile. When moving to higher

levels of income, the average effect gets close to zero and becomes not significant between the

9th and 10th decile. This confirms our conclusions, in which we argue that having a high-

skilled diaspora in specialized areas is particularly beneficial for developing countries, less

for high-income countries. We are aware that the effect is always positive and significant for

the Growth equation, and only not-significant at the highest deciles for the entry equation.

However, we attribute these results to the absence of country*time FEs, so these graphs are

not fully comparable to our baseline regressions.
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Figure A4: Interaction migration and income

Notes: This figure plots the estimated β6 from equation 10 and their corresponding 95% confidence intervals.

Then, we re-estimate the equation by introducing a triple interaction betweenMigration,

GDP pc, and Rel dens:

Yc,t,tw =αc,t,tw + β1Migrationc,t,tw−1 + β2Rel densc,t,tw−1 + β3GPD pcc,tw−1 + β4Controlsc,t,tw−1

+ β5Migrationc,t,tw−1 ∗GPD pcc,tw−1 ∗Rel densc,t,tw−1+

β6Migrationc,t,tw−1 ∗Rel densc,t,tw−1 + γc + δt,tw + εc,t,tw

(11)

The plot for Growth shows that migration has the highest marginal effect in the left

corner of the plot, for low levels of income and relatedness. The plot for Entry shows the

same thing, and also has lots of regions in which the marginal effect of Migration is, on

average, null or negative. However, it’s worth noticing that the average level of relatedness

in our sample is 16.50 with a standard deviation of 17.93. As a consequence the majority of

our observations will fall between the second and third band (and this explains the average

coefficients we get from the original estimations).
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Figure A5: Interaction migration, income, and relatedness

Notes: This figure plots the estimated β5 from equation 11 and their corresponding 95% confidence intervals.
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Appendix 7 IV First stage

Table A6: IV First stage

(Growth) (Entry)

(Pooled sample) (Developing) (High income) (Pooled sample) (Developing) (High income)

IV 0.1784*** 0.1833*** 0.1220*** 0.1777*** 0.1830*** 0.1220***

(0.0083) (0.0098) (0.0153) (0.0083) (0.0098) (0.0153)

Mig*rel 0.0161*** 0.0173*** 0.0144*** 0.0160*** 0.0172*** 0.0144***

(0.0006) (0.0015) (0.0009) (0.0006) (0.0014) (0.0009)

Rel dens -0.0508*** -0.0395*** -0.0574*** -0.0513*** -0.0400*** -0.0575***

(0.0024) (0.0028) (0.0028) (0.0024) (0.0028) (0.0030)

Controls Yes Yes Yes Yes Yes Yes

Country per time FE Yes Yes Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes Yes Yes

Observations 318000 254400 63600 318000 254400 63600

R-squared 0.9133 0.8611 0.9380 0.9133 0.8610 0.9380

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Estimations reported

in Column 1-3 include Tot pat and Copatents as controls, while estimations in Column 2-4 include RTA and Copatents. All RHS

variables are lagged of one time window. Migration, the IV, Tot pat, and Copatents are transformed using the inverse hyperbolic

sine transformation.

Appendix 8 International inventions

Table A7: Pooled sample (international inventions)

Growth Entry

(1) (2) (3) (4) (5) (6)

Migration 0.00957*** 0.0374*** 0.0370*** 0.000115 0.00509*** 0.00493***

(0.00280) (0.00588) (0.00579) (0.000870) (0.000963) (0.000960)

Rel dens 0.00515*** 0.00861*** 0.00833*** 0.000485** 0.00112*** 0.000836***

(0.000441) (0.000750) (0.000765) (0.000184) (0.000178) (0.000182)

Mig*rel -0.000779*** -0.000745*** -0.000195*** -0.000120***

(0.000114) (0.000117) (0.0000301) (0.0000338)

Copatents -0.0159*** -0.0268***

(0.00421) (0.00166)

Tot pat -0.115*** -0.114*** -0.110***

(0.00666) (0.00654) (0.00678)

RTA -0.000208*** -0.000209*** -0.000205***

(0.0000562) (0.0000566) (0.0000556)

Country per time FE Yes Yes Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes Yes Yes

Observations 79596 79596 79596 318000 318000 318000

R-squared 0.444 0.446 0.447 0.0703 0.0706 0.0730

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. All

RHS variables are lagged of one time window. Migration, Tot pat, and Copatents are transformed using the inverse

hyperbolic sine.

57



Table A8: Developing and high-income (international inventions)

Growth

High-income Developing

(1) (2) (3) (4) (5) (6)

Migration Migration 0.00847** 0.0211** 0.0210** 0.0136** 0.0522*** 0.0521***

(0.00317) (0.00677) (0.00677) (0.00588) (0.00800) (0.00814)

Rel dens 0.00401*** 0.00562*** 0.00558*** 0.00618*** 0.0108*** 0.0106***

(0.000459) (0.000983) (0.000992) (0.000904) (0.000861) (0.000953)

Mig*rel -0.000342** -0.000337** -0.00116*** -0.00114***

(0.000133) (0.000134) (0.000153) (0.000168)

Copatents -0.00282 -0.0242*

(0.00444) (0.0142)

Tot pat -0.105*** -0.106*** -0.105*** -0.115*** -0.113*** -0.112***

(0.00932) (0.00947) (0.00946) (0.00992) (0.00986) (0.0102)

Country per time FE Yes Yes Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes Yes Yes

Observations 49348 49348 49348 30141 30141 30141

R-squared 0.298 0.299 0.299 0.511 0.514 0.515

Entry

High-income Developing

(1) (2) (3) (4) (5) (6)

Migration Migration 0.00245 0.00519 0.00498 0.00183* 0.00598*** 0.00596***

(0.00212) (0.00350) (0.00343) (0.000996) (0.00101) (0.00102)

Rel dens 0.000479** 0.000797** 0.000761** 0.000516 0.00106*** 0.000991***

(0.000222) (0.000260) (0.000248) (0.000329) (0.000262) (0.000274)

Mig*rel -0.0000761 -0.0000627 -0.000216*** -0.000200***

(0.0000597) (0.0000586) (0.0000494) (0.0000461)

Copatents -0.00654** -0.0295***

(0.00270) (0.00586)

RTA -0.00473** -0.00473** -0.00467** -0.000161*** -0.000162*** -0.000161***

(0.00136) (0.00136) (0.00136) (0.0000456) (0.0000458) (0.0000457)

Country per time FE Yes Yes Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes Yes Yes

Observations 63600 63600 63600 254400 254400 254400

R-squared 0.0676 0.0677 0.0679 0.0907 0.0911 0.0914

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. All

RHS variables are lagged of one time window. Migration, Tot pat, and Copatents are transformed using the inverse

hyperbolic sine.
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Table A9: IV estimations - international inventions

(Pooled sample) (Developing) (High income)

Growth Entry Growth Entry Growth Entry

Migration 0.0566*** 0.0034 0.0425** 0.0085** 0.0701** -0.0083

(0.0123) (0.0029) (0.0156) (0.0026) (0.0262) (0.0185)

Mig*rel -0.0010*** -0.0001 -0.0010*** -0.0002*** -0.0011* 0.0001

(0.0002) (0.0001) (0.0002) (0.0001) (0.0004) (0.0003)

Rel dens 0.0095*** 0.0008** 0.0102*** 0.0011*** 0.0089*** -0.0000

(0.0010) (0.0003) (0.0012) (0.0003) (0.0022) (0.0011)

Controls Yes Yes Yes Yes Yes Yes

Country per time FE Yes Yes Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes Yes Yes

Observations 79613 318000 30261 254400 49352 63600

R-squared 0.4469 0.0730 0.5169 0.0914 0.2929 0.0675

P-value underid test 0.000 0.000 0.000 0.000 0.000 0.000

Kleibergen-Paap statistic 98.215 460.413 52.482 351.053 44.851 66.456

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Estimations reported in Column 1-3 include Tot pat and Copatents as controls, while estimations in Column

2-4 include RTA and Copatents. All RHS variables are lagged of one time window. Migration, the IV,

Tot pat, and Copatents are transformed using the inverse hyperbolic sine transformation.
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Appendix 9 Excluding outliers

Table A10: Estimations without China

(Growth) (Entry)

Pooled Developing Pooled Developing

(1) (2) (3) (4)

Migration 0.0345*** 0.0458*** 0.00599*** 0.00618***

(0.00545) (0.00679) (0.000996) (0.000999)

Rel dens 0.00861*** 0.0102*** 0.00148*** 0.00181***

(0.000710) (0.000858) (0.000194) (0.000276)

Mig*rel -0.000664*** -0.000871*** -0.000113*** -0.000135**

(0.000110) (0.000130) (0.0000321) (0.0000401)

Copatents -0.0117*** -0.0255** -0.0219*** -0.0285***

(0.00339) (0.0125) (0.00176) (0.00723)

Tot pat -0.126*** -0.137***

(0.00656) (0.00933)

RTA -0.000197*** -0.000157***

(0.0000535) (0.0000445)

Country per time FE Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes

Observations 90991 39443 315456 251856

R-squared 0.442 0.480 0.0669 0.0823

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, **

p < 0.05, *** p < 0.01. All RHS variables are lagged of one time window. Migration,

Tot pat, and Copatents are transformed using the inverse hyperbolic sine.
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Table A11: Estimations without India

(Growth) (Entry)

Pooled Developing Pooled Developing

(1) (2) (3) (4)

Migration 0.0349*** 0.0484*** 0.00648*** 0.00705***

(0.00565) (0.00769) (0.00111) (0.00123)

Rel dens 0.00855*** 0.0102*** 0.00148*** 0.00178***

(0.000700) (0.000854) (0.000193) (0.000272)

Mig*rel -0.000712*** -0.00105*** -0.000136*** -0.000189***

(0.000126) (0.000216) (0.0000363) (0.0000494)

Copatents -0.0103** -0.0221* -0.0219*** -0.0283***

(0.00353) (0.0122) (0.00176) (0.00744)

Tot pat -0.124*** -0.134***

(0.00622) (0.00830)

RTA -0.000196*** -0.000156***

(0.0000532) (0.0000441)

Country per time FE Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes

Observations 91859 40332 315456 251856

R-squared 0.444 0.483 0.0666 0.0821

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, **

p < 0.05, *** p < 0.01. All RHS variables are lagged of one time window. Migration,

Tot pat, and Copatents are transformed using the inverse hyperbolic sine.
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Table A12: Estimations without US as destination country

Growth Entry

(Pooled) (High-income) (Developing) (Pooled) (High-income) (Developing)

Migration 0.0250*** 0.0126** 0.0418*** 0.00625*** 0.00436 0.00777***

(0.00508) (0.00525) (0.00887) (0.00116) (0.00305) (0.00151)

Rel dens 0.00745*** 0.00520*** 0.00904*** 0.00150*** 0.00126*** 0.00179***

(0.000596) (0.000804) (0.000709) (0.000183) (0.000301) (0.000268)

Mig*rel -0.000582*** -0.000222* -0.00102*** -0.000186*** -0.0000972 -0.000280***

(0.000121) (0.000128) (0.000238) (0.0000395) (0.0000617) (0.0000561)

Copatents -0.0109** 0.000607 -0.0232* -0.0213*** -0.00350 -0.0276***

(0.00342) (0.00383) (0.0122) (0.00181) (0.00262) (0.00769)

Tot pat -0.126*** -0.118*** -0.138***

(0.00644) (0.00886) (0.00870)

RTA -0.000197*** -0.00438** -0.000157***

(0.0000535) (0.00128) (0.0000444)

Country per time FE Yes Yes Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes Yes Yes

Observations 93494 51489 41967 318000 63600 254400

R-squared 0.444 0.325 0.486 0.0661 0.0709 0.0810

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. All RHS

variables are lagged of one time window. Migration, Tot pat, and Copatents are transformed using the inverse hyperbolic

sine.
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Appendix 10 Alternative dependent variables

Table A13: Excluding collaborations

Growth Entry

(Pooled) (High-income) (Developing) (Pooled) (High-income) (Developing)

Migration 0.0429*** 0.0198** 0.0802*** 0.00466*** 0.00613 0.00428***

(0.0104) (0.00838) (0.0159) (0.00109) (0.00424) (0.00124)

Rel dens 0.00925*** 0.00597*** 0.0135*** 0.00105*** 0.00129** 0.00135***

(0.00119) (0.00102) (0.00206) (0.000182) (0.000383) (0.000247)

Mig*rel -0.000596** -0.000159 -0.00111*** -0.0000338 -0.0000948 -0.0000283

(0.000183) (0.000165) (0.000317) (0.0000348) (0.0000795) (0.0000528)

Copatents 0.0316*** 0.0226** 0.0496* -0.0152*** -0.00286 -0.0137**

(0.00865) (0.00913) (0.0253) (0.00151) (0.00268) (0.00581)

Tot pat -0.246*** -0.214*** -0.333***

(0.0187) (0.0198) (0.0347)

RTA -0.000158*** -0.00400** -0.000122***

(0.0000441) (0.00125) (0.0000360)

Country per time FE Yes Yes Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes Yes Yes

Observations 73122 47589 25429 318000 63600 254400

R-squared 0.298 0.272 0.367 0.0735 0.0714 0.0898

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. All RHS

variables are lagged of one time window. Migration, Tot pat, and Copatents are transformed using the inverse hyperbolic

sine.
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Table A14: Excluding PCT applications

Growth Entry

(Pooled) (High-income) (Developing) (Pooled) (High-income) (Developing)

Migration 0.0400*** 0.0225** 0.0605*** 0.00618*** 0.00253 0.00657***

(0.00645) (0.00903) (0.00654) (0.00114) (0.00369) (0.00140)

Rel dens 0.00890*** 0.00645*** 0.0104*** 0.00132*** 0.00101** 0.00149***

(0.000791) (0.00118) (0.000805) (0.000175) (0.000363) (0.000223)

Mig*rel -0.000762*** -0.000334* -0.00119*** -0.0000540 -0.0000124 -0.0000640

(0.000135) (0.000171) (0.000165) (0.0000404) (0.0000769) (0.0000680)

Copatents -0.00936* -0.000469 -0.0220 -0.0168*** -0.00786** -0.0167**

(0.00539) (0.00685) (0.0136) (0.00200) (0.00321) (0.00651)

Tot pat -0.118*** -0.113*** -0.135***

(0.00769) (0.00919) (0.0118)

RTA -0.000106** -0.00250** -0.0000840**

(0.0000324) (0.000809) (0.0000279)

Country per time FE Yes Yes Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes Yes Yes

Observations 84124 47338 36745 318000 63600 254400

R-squared 0.377 0.262 0.453 0.0753 0.0694 0.0875

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. All RHS

variables are lagged of one time window. Migration, Tot pat, and Copatents are transformed using the inverse hyperbolic

sine.
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Appendix 11 Excluding zero cells

Table A15: Estimations excluding zero cells

(Growth) (Entry)

Pooled High-income Developing Pooled High-income Developing

(1) (2) (3) (4) (5) (6)

Migration 0.0268*** 0.0121* 0.0421*** 0.0069*** 0.0027 0.0096***

(0.0046) (0.0051) (0.0075) (0.0018) (0.0036) (0.0022)

Rel dens 0.0088*** 0.0051*** 0.0122*** 0.0017*** 0.0012** 0.0021***

(0.0007) (0.0007) (0.0010) (0.0003) (0.0004) (0.0004)

Mig*rel -0.0006*** -0.0002 -0.0012*** -0.0002** -0.0000 -0.0003***

(0.0001) (0.0001) (0.0002) (0.0000) (0.0001) (0.0001)

Copatents -0.0079* 0.0003 -0.0160 -0.0185*** -0.0006 -0.0245***

(0.0035) (0.0033) (0.0103) (0.0025) (0.0032) (0.0060)

Tot pat -0.1395*** -0.1071*** -0.1731***

(0.0089) (0.0099) (0.0113)

RTA -0.0005 -0.0070*** -0.0004

(0.0003) (0.0017) (0.0002)

Country per time FE Yes Yes Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes Yes Yes

Observations 47528 27170 20131 93402 31352 61791

R-squared 0.3741 0.3070 0.4369 0.0565 0.0901 0.0727

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

All RHS variables are lagged of one time window. Migration, Tot pat, and Copatents are transformed using a

regular logarithmic transformation.
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Appendix 12 Migration at the ipc4 level

Table A16: Migration at the ipc4 level

(Growth) (Entry)

Pooled High-income Developing Pooled High-income Developing

(1) (2) (3) (4) (5) (6)

Migration 0.0412*** 0.0151* 0.0730*** 0.00743 0.00447 0.0168**

(0.00819) (0.00850) (0.0137) (0.00462) (0.00545) (0.00723)

Rel dens 0.00650*** 0.00483*** 0.00783*** 0.00131*** 0.00108*** 0.00161***

(0.000484) (0.000597) (0.000748) (0.000180) (0.000229) (0.000299)

Mig*rel -0.00129*** -0.000510** -0.00203*** -0.000539*** -0.000195 -0.000797***

(0.000199) (0.000206) (0.000364) (0.000101) (0.000116) (0.000178)

Copatents -0.00757** 0.00150 -0.0163* -0.0159*** -0.00300 -0.0203**

(0.00325) (0.00368) (0.00869) (0.00197) (0.00240) (0.00861)

Tot pat -0.124*** -0.118*** -0.136***

(0.00640) (0.00864) (0.00920)

RTA -0.000196*** -0.00437** -0.000157***

(0.0000534) (0.00128) (0.0000444)

Country per time FE Yes Yes Yes Yes Yes Yes

Tech per time FE Yes Yes Yes Yes Yes Yes

Observations 93494 51489 41967 318000 63600 254400

R-squared 0.445 0.325 0.487 0.0667 0.0709 0.0815

Notes: Standard errors clustered at the country level in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. All RHS

variables are lagged of one time window. Migration, Number of patents, Mig rel tech, Mig nrel tech, and Copatents

are transformed using the inverse hyperbolic sine.
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