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Abstract

Regret is a negative and counterfactual emotion that occurs when a
decision maker believes her past decision, if changed, would achieve a
better outcome. Regret is intrinsically related to the comparison of the
chosen alternative outcome with the foregone alternative outcomes. The
result of this comparison is influenced by the decision maker’s information
about the foregone alternative outcomes (feedback structure). In this
paper, we use Gabillon (2020)’s model, which generalizes regret theory to
any feedback structure. We show that a regretful decision maker exhibits
information aversion. The anticipation of learning about the payoffs of the
foregone alternatives decreases her expected utility. We use the concept of
statistical suffi ciency in order to classify the feedback structures according
to their informational content. We show that the less informative the
feedback structure is, the higher the utility of a regretful decision maker.
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Regret is a counterfactual emotion (Kahneman and Miller 1986), which can
occur when a decision maker (DM) compares the result of her choice to what
she would have obtained had she made another decision. Regret occurs when
the DM concludes that things would have been better under a different choice.
In decision theory, anticipated regret was first considered by Savage (1951)

and further explored by Luce & Raiffa (1956). Seminal contributions in regret
modeling can be found in Bell (1982, 1983) and Loomes and Sugden (1982, 1987).
Axiomatic foundations of preferences are provided by Fishburn (1989), Sugden
(1993), Quiggin (1994) and, more recently, by Diecidue and Somasundaram
(2017).
A large part of regret theory is established under perfect information, where

the payoffs of the foregone alternatives are perfectly observable. Among the
exceptions, Bell (1983) considers the choice between a sure thing and a risky
lottery and asks whether the choice of the sure thing would not be more at-
tractive if the foregone lottery were unresolved. More recently, Gabillon (2020)
proposes a model in which a DM receives signals about the foregone alterna-
tive payoffs. This approach allows considering any level of information about
the foregone payoffs (feedback structure). The feedback structure (FS) can be
perfectly informative when signals perfectly reveal the payoffs of the foregone
alternatives, non-informative when signals do not disclose any information, and
imperfectly informative when signals partially reveals the payoffs of the fore-
gone alternatives. Gabillon (2020) shows that anticipated regret does depend
on anticipated feedback.
In this paper, we use the model of Gabillon (2020) to compare the different

FSs according to the preferences of a regretful DM. We show that a regretful
DM prefers to be as little informed as possible about the rejected alternative
payoffs. Information about the foregone alternative payoffs makes anticipated
regret more salient and decreases the DM expected utility. In order to obtain
this result, we use Fisher (1920)’s statistical criteria of suffi ciency in order to
compare the FS informational contents. FS A is said to be more informative
than FS B if signals in A are suffi cient statistics for signals in B about the
foregone alternative payoffs. We show that, if FS A is more informative than
FS B, a regretful DM prefers FS B. Moreover, we show that, among all possible
FS, a regretful DM always prefers the non-informative FS. Regret aversion leads
to aversion to ex-post information, information which occurs after the choice.
Furthermore, Gabillon (2020) shows that information received before the choice
can also be harmful to a regretful DM, even though this information improves
the DM’s knowledge about the different alternatives among which she has to
choose.
On the experimental side, our results about regret and information are con-

sistent with the study of Zeelenberg et al. (1996), which shows that people tend
to avoid having information about foregone alternatives. The authors performed
an experiment where they set up two risky lotteries to which participants are
indifferent. Indifference as regards the two lotteries is established when there is
no feedback on the foregone lottery. Stated otherwise, people exclusively obtain
feedback on the lottery of their choice. One of the two lotteries is relatively
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risky, the other relatively safe (the probability of winning is higher but the gain
is lower). Zeelenberg et al. (1996) modify the feedback context and observe
the behavioral consequences. When people know that the result of the risky
lottery will be systematically revealed, they are no longer indifferent to the two
lotteries, tending to prefer the risky one. They abandon the safe lottery because
they try to protect themselves against the regret which may arise from having
information about the foregone lottery (information about the risky lottery if
they choose the safe lottery). Zeelenberg et al. (1996) show that regret aversion
induces risk-seeking behavior (when people anticipate feedback on the risky lot-
tery), or risk-avoiding behavior (when people anticipate feedback on the safe
lottery). These types of behavior, which consist in avoiding information about
the foregone lottery, are consistent with our result. Many other experimental
studies (Josephs et al. 1992; Larrick and Boles 1995; Ritov 1996; Zeelenberg and
Beattie 1997; Zeelenberg 1999) also reveal the sensitivity of choices to the feed-
back context, and demonstrate that people try to protect themselves against
information about what they could have obtained by making a different choice.
In regret theory, Bell (1983) introduces the concept of cancellation price,

which corresponds to the sure thing which makes a regretful DM indifferent
about choosing the sure thing or choosing a risky lottery. Bell (1983) assumes
that the foregone lottery is not resolved if the sure thing is selected. In our
vocabulary, Bell (1983) defines the cancellation price under a non-informative
FS. Gabillon (2020) generalizes Bell (1983)’s cancellation price to a large range
of utility functions and refers to the cancellation price as the regret certainty
equivalent.
In this paper, we generalize the regret certainty equivalent of a risky lot-

tery to any FS. We show that the regret certainty equivalent of a risky lottery
increases with the informativeness of the FS. The certainty equivalent is thus
maximal when the FS is perfectly informative and minimal when the FS is
non-informative. Under a non-informative FS, the choice of the sure thing fully
protects the DM against anticipated regret. After the choice, since the lottery
payoff is not observable, it cannot be compared to the sure thing and regret
cannot be experienced. When, however, some information about the foregone
choice is available after the choice, the sure thing no longer offers a full pro-
tection against regret and becomes less attractive. Consequently, the regret
certainty equivalent of the risky lottery increases with the informativeness of
the FS.
The paper is organized as follows. Sections 1 and 2 are dedicated to a short

presentation of the model of Gabillon (2020): Section 1 presents the concept
of FS and Section 2 presents a generalization of preferences to any FS. Section
3 introduces the concept of statistical suffi ciency in regret theory. Section 4 is
devoted to information aversion.
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1 Feedback Structures

In this section, we briefly recall the concept of FS introduced in Gabillon (2020).
Let Φ = {Y1, .., YN+1} denote the set of N + 1 risky alternatives. A risky alter-
native Yn is a random variable, which takes its values on a set Ω, which contains
a finite number of positive values. A risky alternative Yn is characterized by a
probability distribution on Ω, denoted by its generic term p (yn).
Without loss of generality, the chosen alternative is denoted by X and the

foregone alternatives by Y1, .., YN . In order to deal with any FS, we assume
that, at the feedback stage (i.e., after the choice), a DM observes not only
the chosen alternative’s outcome x but also a realization m of a signal MX

about the foregone alternative outcomes y1, .., yN . Signal MX is assumed to
be a random variable (possibly multidimensional), which takes its values on a
set M , which contains a finite number of elements. In order to shorten our
notations, the foregone alternative outcomes y1, .., yN will be denoted by θ−x.
The random variable MX is a signal on the feedback stage’s state of nature θ x

and is characterized by a conditional probability distribution on M , denoted by
its generic term p (m |θ x, x ). This conditional probability distribution depends
on the chosen alternative X, but can also differ according to the observed payoff
x. Probability p (m |θ x, x ) represents the probability of observing signal m
given that alternative X has been chosen, given payoff x and given foregone
alternative payoffs θ−x.
In what follows, we first introduce the concept of FS at the level of one

alternative X and then, we define a FS associated with an entire choice set
Φ = {Y1, .., YN+1}.
Let FSX = (X,MX) denote the alternative X FS. FSX contains all available

information at the feedback stage, after alternative X has been selected.

Definition 1. FSX is said to be non-informative if the probability distribution
of MX is the same for all θ−x: ∀x ∈ Ω,∀ θ−x ∈ ΩN , p (m |θ−x, x ) = p (m |x ).
One cannot learn about θ−x by observing from MX .
At the other end, FSX is said to be perfectly informative if for every x ∈ Ω,

for every pair
(
θi−x, θ

j
−x

)
∈ ΩN × ΩN , the intersection of the support sets

on which p
(
m
∣∣θi−x, x) and p(m ∣∣∣θj−x, x) are strictly positive is an empty set.

After observingMX , the state of nature θ−x that generatedMX can be identified
with certainty.

FSX is said to be imperfectly informative in all other situations.

We point out that, even when FSX is non-informative, a DM can learn about
θ x by observing x. This happens when X and Y1, .., YN are not statistically
independent, a situation that we do not exclude from our analysis.
In the rest of the paper, either {Y1, .., YN+1} or {X,Y1, .., YN} will refer to

the choice set Φ depending on whether we need or not to distinguish the chosen
alternative X from the other alternatives. Hereafter, we give the definition of a
FS associated to a choice set Φ:
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Definition 2. The feedback structure FS, associated to the choice set Φ =
{Y1, .., YN+1}, is the set of all alternative FSs:

FS =
{
FSY1 , ..., FSYN+1

}
Definition 3. A FS is said to be non-informative if FSYn is non-informative
for every Yn ∈ Φ.
A FS is said to be perfectly informative if FSYn is perfectly informative for

every Yn ∈ Φ.
A FS is said to be imperfectly informative in all other situations.

2 Preferences

We use the preferences developed in Gabillon (2020). The regret utility function
(r-utility) u(x, r) depends on the payoff x of the chosen alternative X and on
a reference point. The reference point represents the impact of anticipated
regret on the DM’s utility. When r > x, we will see in what follows that a
foregone alternative performs better than the chosen alternative, and regret is
anticipated1 . In order to give a definition of the reference point, we need to
define the concept of choiceless utility (c-utility):

Definition 4. The c-utility function is defined as v (x) = u(x, x) and measures
the satisfaction generated by the consumption of payoff x, independently of any
choice-related feeling.

In Definition 4, the c-utility function represents preferences in which sensitiv-
ity to regret has been removed (r = x) and corresponds to the DM’s preferences
if she were not regret averse. The c-utility v (x) represents the utility of x when
the payoff x is evaluated in a no-choice setting. At the feedback stage, we as-
sume that the N + 1 alternatives are evaluated with the c-utility function since
the choice has already been made and cannot be modified.

Gabillon (2020) makes some assumptions about the r-utility function u(x, r).
Let u1 (x, r) denote ∂u(x,r)

∂x , u2 (x, r) denote ∂u(x,r)
∂r and v

′
(x) denote ∂v(x)

∂x .

A0. The r-utility u (x, r) is differentiable on R+2.

A1. v′ (x) = u1 (x, x) + u2 (x, x) > 0.

A2. u1 (x, r) > 0.

A3. u2 (x, r) < 0.

1Gabillon (2020) shows that r > x does not necessarily imply that regret is anticipated. A
reference point greater than the chosen action payoff can also mean that the DM experiences
a psychological opportunity cost. In this paper, we will, however, do not make the distinction,
always referring to anticipated regret when r > x. See Gabillon (2020) for a formal distinction
between anticipated regret and psychological opportunity cost.
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Assumptions A1 and A2 state that utility increases with payoff x. Assump-
tion A3 states that the r-utility decreases with the reference point and char-
acterizes regret aversion. Given payoff x, anticipated regret increases with the
reference point and utility decreases.

We assume that a DM has some priors about the foregone alternative pay-
offs denoted by p (θ−x). At the feedback stage, each foregone alternative Yn
is characterized by a posterior probability distribution p (θ−x |x,m ) after the
information has been processed. The posterior probability distribution repre-
sents the DM’s knowledge about Yn at the feedback stage. We recall that, at
the feedback stage, a DM evaluates the N + 1 alternatives with the c-utility
function. We can compute the posterior certainty equivalent of each alternative
Yn :

v
(
CEv,FSxYn

)
= E [v (Yn)|FSx] , (1)

where FSx = {x,m} and where the operator E [ .|FSx] represents the condi-
tional expectation, given the realizations of X and MX . The notation CE

v,FSx
Yn

indicates, in superscript, that the certainty equivalent is computed with the
c-utility function v (.), given information FSx = {x,m}.
The posterior certainty equivalent of the chosen alternative is equal to the

realization of the payoff itself.

CEv,x,mX = x. (2)

We can now give the definition of a reference point which accommodates any
FS.

Definition 5. The reference point RFSX is the highest posterior certainty equiv-
alent:

RFSX = Max
{
X,CEv,FSXY1

, .., CEv,FSXYN

}
where FSX = (X,MX) .

The notation RFSX indicates, in superscript, the variables that a DM ob-
serves at the feedback stage. Under assumption A1, the reference point is the
certainty equivalent of the alternative which maximizes the expected c-utility,
given available information at the feedback stage2 . In the event RFSX > X,
the DM regrets her choice since, given her information, a foregone alternative
proves to be more attractive than the chosen alternative.
We can rewrite the reference point (see Definition 5) as

RFSX = Max
{
X,CEv,FSXMax

}
, (3)

with CEv,FSXMax = Max
{
CEv,FSXY1

, ..., CEv,FSXYN

}
.

2The definition of the reference point implies that RFSX cannot be lower than X, excluding
the feeling of rejoicing, when a DM learns that the chosen alternative turns out to be the best
choice.
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We obtain the preferences of a regretful DM :

E
[
u
(
X,RFSX

)]
= E

[
u
(
X,Max

{
X,CEv,FSXMax

})]
. (4)

The properties of these preferences are analyzed in Gabillon (2020).

In this paper, we introduce two additional assumptions about the r-utility
function:

A4. u22 (x, r) ≤ 0

A5. v′′ (x) ≤ 0

Assumptions A4 and A5 are “concavity assumptions”. Concavity does not
need to be strict: our results are compatible with u22 (x, r) = 0 and v” (x) = 0.
(see Example 1 in the next section).

3 Statistical Suffi ciency and Feedback Structures

In this section, we compare the informativeness of different FSs. We begin
our analysis at the level of one alternative X, by comparing the informational
content of two different alternative X FSs. Then, we generalize our comparison
to a choice set Φ, by comparing the informational content of two different FS.
For this purpose, we use the concept of statistical suffi ciency of Fisher (1920).

Consider two different alternative X FSs, FSaX = (X,Ma
X) and FSbX =(

X,M b
X

)
. Let p (ma |θ−x, x ) denote the conditional probability of signal Ma

X

and p (mb |θ−x, x ) denote the conditional probability of signal M b
X .

Definition 6. FSaX is suffi cient for FSbX about the foregone alternative payoffs
if, for every x ∈ Ω, there exits a stochastic transformation π (ma |mb, x ) such
that
∀mb ∈ M, ∀θ−x ∈ ΩN , p (mb |θ−x, x ) =

∑
ma∈M

π (mb |ma, x ) p (ma |θ−x, x )

with
∑

mb∈M
π (mb |ma, x ) = 1.

Definition 6 can be reformulated as follows: FSaX is suffi cient for FSbX if
there exists a joint probability distribution π (ma,mb |θ−x, x ) (possibly different
from the real joint probability distribution p (ma,mb |θ−x, x )), whose marginal
distributions coincide with the true marginal distributions:

∑
mb∈M

π (ma,mb |θ−x, x ) = p (ma |θ−x, x ) and
∑

ma∈M
π (ma,mb |θ−x, x ) = p (mb |θ−x, x ) .

(5)
and which satisfies
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∀θ−x ∈ ΩN , π (mb |ma, θ−x, x ) = π (mb |ma, x ) . (6)

Given distribution π (ma,mb |θ−x, x ), signal M b
X is garbled from signal Ma

X

in the sense of Blackwell (1951). In other words, we move from signal Ma
X to

signal M b
X by adding noise. A DM who observes Ma

X can generate M b
X with

the stochastic process π (mb |ma, x ), which is independent of θ−x.

In order to compare different FSs with the concept of suffi ciency, we intro-
duce the following definition:

Definition 7. FSa is suffi cient for FSb if, for at least one Yn ∈ Φ, FSaYn is
suffi cient for FSbYn , other alternative FSs being identical.

Let FSni denote a non-informative FS and FSi a perfectly informative FS.
We obtain the following proposition:

Proposition 1. Any FS is suffi cient for FSni.
FSi is suffi cient for any FS.

Proof. See Appendix A.

4 Information Aversion

In this Section, we show that a regretful DM exhibits feedback aversion or ex-
post information aversion. Ex-post information refers to information about the
foregone alternative payoffs, which arises after the choice has been made. In
order to go further, we introduce the following definition:

Definition 8. A regretful DM prefers FSb to FSa if her expected utility under
FSb is higher than under FSa:

Max
Yn∈Φ

E

[
u

(
Yn,Max

(
Y,CE

v,FSbYn
Max

))]
≥Max

Yn∈Φ
E
[
u
(
Yn,Max

(
Yn, CE

v,FSaYn
Max

))]
.

We obtain the following Proposition, which characterizes information aver-
sion:

Proposition 2. If FSa is suffi cient for FSb then a regretful DM prefers FSb

to FSa.

Proof. See Appendix B.

Appendix B shows that the expected utility of each alternative Yn is higher
under FSb. According to Proposition 2, a DM prefers to minimize her exposure
to ex-post information in order to protect herself against future regret. Concav-
ity assumptions A4 and A5, which include the case u22 (x, r) = 0 and v” (x) = 0,
are suffi cient conditions for ex-post information aversion3 .

3 In an alternative setting, in which the reference point is defined as RFSX =

Max
{
v (X) , v

(
CE

v,FSX
Y1

)
, .., v

(
CE

v,FSX
YN

)}
,, assumption A4 alone leads to information

aversion. There is no need to formulate assumption A5.
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To give an intuition about information aversion, let us consider the following
property, which is demonstrated when FSa is suffi cient for FSb(see Equation
B.15 in Appendix B):

∀X ∈ Φ,∀Yn ∈ Φ/ {X} ,∀x ∈ Ω,∀mb ∈M,v
(
CE

v,FSbx
Yn

)
=

∑
ma∈M

kxmbmav
(
CE

v,FSax
Yn

)
,

(7)
with

∑
ma∈M

kxmbma = 1.

Under FSb, at the feedback stage, the expected c-utility derived from a
foregone alternative Yn is a convex combination of the expected c-utilities of Yn
under FSa. In other words, expected c-utilities under FSb are mean preserving
contractions of expected c-utilities under FSa.
To give an intuition about the information aversion result, let us consider a

particular case where v (x) is linear. Equation 7 becomes

∀X ∈ Φ,∀Yn ∈ Φ/ {X} ,∀x ∈ Ω,∀mb ∈M,CE
v,FSbx
Yn

=
∑

ma∈M
kxmbmaCE

v,FSax
Yn

,

(8)

Given the chosen alternative payoffx, the reference pointRFSx = Max
{
x,CEv,FSxY1

, .., CEv,FSxYN

}
is a convex function and the r-utility, which decreases with the reference point,
is concave. Mean preserving contraction and concavity explain the information
aversion result. This property of concavity is not related to the shape of the
r-utility function. Information aversion exists as soon as the r-utility does not
exhibit too much convexity, which could then counteract the concavity property.
The same goes for the c-utility function. In particular, information aversion is
compatible with u22 (x, r) = 0 and v” (x) = 0.

Example 1. The r-utility function is u (x, r) = x− r
2 and the c-utility function

is v (x) = u (x, x) = x
2 . We consider a choice set Φ = {Y1, Y2}, containing two

statistically independent alternatives. Each alternative takes its values on the set
Ω = {6, 8, 16, 18}. Alternative Y1 is characterized by the probability distribution(

1
2 , 0,

1
2 , 0
)
and alternative Y2 by the probability distribution

(
0, 3

4 , 0,
1
4

)
. Signals

MY1 (signal on Y2 when Y1 is chosen) andMY2 (signal on Y1 when Y2 is chosen)
take values on M = {0, 1}.
We assume that FSa is perfectly informative. Signals Ma

Y1
and Ma

Y2
are

characterized by the following conditional probability distributions :

Signal Ma
Y1

y2 = 8 y2 = 18

ma = 0 p (ma = 0 |y2 = 8) = 1 p (ma = 0 |y2 = 18) = 0
ma = 1 p (ma = 1 |y2 = 8) = 0 p (ma = 1 |y2 = 18) = 1

and

Signal Ma
Y2

y1 = 6 y1 = 16

ma = 0 p (ma = 0 |y1 = 6) = 1 p (ma = 0 |y1 = 16) = 0
ma = 1 p (ma = 1 |y1 = 6) = 0 p (ma = 1 |y1 = 16) = 1
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Under FSb, signal probability distributions are the following:

Signal M b
Y1

y2 = 8 y2 = 18

mb = 0 p (mb = 0 |y2 = 8) = 3
4 p (mb = 0 |y2 = 18) = 1

4

mb = 1 p (mb = 1 |y2 = 8) = 1
4 p (mb = 1 |y2 = 18) = 3

4

and

Signal M b
Y2

y1 = 6 y1 = 16

mb = 0 p (mb = 0 |y1 = 6) = 3
4 p (mb = 0 |y1 = 16) = 1

4

mb = 1 p (mb = 1 |y1 = 6) = 1
4 p (mb = 1 |y1 = 16) = 3

4

First, we note that FSa is suffi cient for FSb:

∀mb ∈M = {0, 1} ,∀θ−x ∈ {6, 16} or {8, 18} , p (mb |θ−x ) =
∑

ma∈M
π (mb |ma ) p (ma |θ−x ) ,

(9)

with
π (mb |ma ) ma = 0 ma = 1
mb = 0 3

4
1
4

mb = 1 1
4

3
4

and
∑

mb∈M
π (mb |ma, x ) = 1.

Annexe C shows that the expected r-utilities of both alternatives are higher
under FSb.

From propositions 1 and 2, we obtain the following corollary, which also
characterizes information aversion :

Corollary 1. A regretful DM prefers a non-informative FS to any other FS.
On the other hand, the perfectly informative FS is the worst FS for a regretful
DM.

While Proposition 2 is restricted to the comparison of FSs that can be
ordered with the criteria of suffi ciency, we stress the generality of Corollary
1. Among all FSs (without any restrictions), a regretful DM prefers the non-
informative FS. Similarly, among all FS, the perfectly informative FS represents
the least desirable FS.

In what follows, we generalize to any FS the definition of the regret certainty
equivalent, which was developed under a non informative FS in Gabillon (2020)
and first introduced by Bell (1983) under the name of cancellation price.

Definition 9. The regret certainty equivalent CEu,FSY of a risky alternative Y
corresponds to the sure payoff which makes the DM indifferent about choosing
CEu,FSY or Y .

The regret certainty equivalent CEu,FSY is the Z-solution of the following
Equation:

E
[
u
(
Z,Max

(
Z,CEv,FSZY

))]
= E [u (Y,Max (Y,Z))] , (10)
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where FSZ = {Z,MZ} contains a signal MZ about lottery Y .

When a DM chooses Y , she observes the result of her choice (the result of
the risky lottery Y ) and she knows the result of the foregone choice (the value
of the sure payoff). When she chooses the sure payoff, she obviously knows the
result of her choice and she receives a signal MZ on the result of the foregone
risky alternative Y . In this setting, the informativeness of MZ determines the
level of informativeness of the FS.
Let CEu,niY denote the regret certainty equivalent of Y under a non-informative

FS (MZ conveys no information). Gabillon (2020) shows that , y < CEu,niY <
CEvY , where y denotes the minimum value that Y can take on its support
Ω and CEvY denotes the Arrow-Pratt certainty equivalent of Y , computed with
the c-utility function4 . Gabillon (2020) shows that, under a non-informative FS,
the regret certainty equivalent is lower than the Arrow-Pratt certainty equiva-
lent.This result is independent of the shape of the r-utility function. Under a
non-informative FS, for a DM who chooses between a sure payoff and a risky
lottery, the sure payoff is more attractive when anticipated regret is taken into
account in decision-making. The sure payoff offers a protection against antici-
pated regret. When the sure payoff is chosen under a non-informative FS, the
DM does not learn the result of the foregone risky alternative after her choice
and regret cannot be felt. On the contrary, when she chooses the risky alterna-
tive Y , she can compare the obtained payoff to the sure payoff. The difference
ΠY = CEvY −CEuY is a generalization to a large range of utility function u(x, r)
(satisfying A0 to A3) of the regret premium introduced by Bell (1983). Gabillon
(2020) show that the regret premium is always positive when rejoicing is not
taken into account. The author also proposes a new interpretation of the regret
premium, as the maximum psychological opportunity cost a DM is willing to
endure to avoid regret5 .

Proposition 3. Whatever the FS, the regret certainty equivalent CEu,FSY exists
and is unique.

Proof. See Appendix D.

Proposition 4. If FSa is suffi cient for a FSb then for any risky alternative
Y , we have CEu,FS

b

Y ≤ CEu,FS
a

Y .

Proof. See Appendix D.

When the FS becomes more informative, choosing the sure payoff offers less
protection against feedback and anticipated regret. The attractiveness of the
sure thing decreases with the informativeness of the FS. In order to remain as
attractive as the lottery, the certainty equivalent must increase as the informa-
tiveness of the FS intensifies.

4Under a non-informative FS, the Arrow-Pratt certainty equivalent satisfies v
(
CEvY

)
=

E [v (Y )].
5A psychological opportunity cost is defined as the negative emotional counterpart of a

strategy of regret avoidance.
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If CEu,FS
i

Y denote the regret certainty equivalent under FSi and CEu,FS
ni

Y

the regret certainty equivalent under FSni, propositions 1 and 4 give :

Corollary 2. For any FS and for any riky alternative Y , we have CEu,FS
ni

Y ≤
CEu,FSY ≤ CEu,FS

i

Y .

5 Conclusion

In this paper, we show that perfect feedback corresponds to the most unfavor-
able informational background for a regretful DM. It is under perfect feedback
that anticipated regret is the most harmful to the decision maker. In Gabil-
lon (2020), the singularity of perfect feedback is also highlighted as the author
shows that statewise stochastic dominance, an apparently natural property of
preferences, is satisfied under perfect feedback, but cannot be generalized to
any other FS. Gabillon (2020) also shows that perfect feedback represents the
unique FS under which the author’s concept of psychological opportunity cost6

is irrelevant. Given the particularity of its implications, we believe that the as-
sumption of perfect feedback should be used with caution when drawing general
conclusions about decision-making under regret aversion.

Appendix A

Let FS be any feedback structure and let p (m |θ−x, x ) denote the conditional
probability of signal MX under FS. Let p (mni |θ−x, x ) denote the conditional
probability of signal Mni

X under FSni.
FSni is non-informative if

∀X ∈ Φ,∀x ∈ Ω,∀mni ∈M,∀θ−x ∈ ΩN , p (mni |θ−x, x ) = p (mni |x ) . (A.1)

We notice that

p (mni |θ−x, x ) =
∑
m∈M

p (mni |x ) p (m |θ−x, x ) , (A.2)

with
∑

mni∈M
p (mni |x ) = 1.

Taking π (mni |m,x ) = p (mni |x ), we can conclude that ∀X ∈ Φ, FSX is
suffi cient for FSniX about the foregone alternative payoffs. Since Mni

X is non-
informative, the conditional probability π (mni |m,x ) does not depend on m.
This ends the proof of the first part of Proposition 1.

Let p (mi |θ−x, x ) denote the conditional probability of signal M i
X under

FSi.
6A negative emotional counterpart of a strategy of regret avoidance.
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FSi is perfectly informative if ∀X ∈ Φ,∀x ∈ Ω, for each θ−x ∈ ΩN , there
exist a subset zθ−x @M such that

∀mi ∈ zθ−x , p (mi |θ−x, x ) > 0 and
∑
zθ−x

p (mi |θ−x, x ) = 1. (A.7)

Observing M i
X is equivalent to observing θ−x and thus p (m |mi, θ−x, x ) =

p (m |mi, x ). A DM who observes the value mi taken by signal M i
X knows the

state of nature θ−x (mi) and can generate signalMX with the stochastic process
p (m |θ−x (mi) , x ) and obtain a result equivalent to the result of observing both
M i
X and MX . Observing M i

X is suffi cient.
We have

p (m |θ−x, x ) =
∑
mi∈M

p (m |mi, θ−x, x ) p (mi |θ−x, x ) =
∑
mi∈M

p (m |mi, x ) p (mi |θ−x, x )

(A.8)
This ends the proof of the second part of Proposition 1.

Appendix B

Let p (θ x |x ) the posterior probability of θ−x given the observation of the cho-
sen alternative payoff. Definition 6 gives:

∀x ∈ Ω,∀mb ∈M,∀θ−x ∈ ΩN , p (mb |θ−x, x ) p (θ−x |x ) (B.1)

=
∑

ma∈M
π (mb |ma, x ) p (ma |θ−x, x ) p (θ−x |x ) ,

with
∑

mb∈M
π (mb |ma, x ) = 1.

By summing over θ−x, we have

∀x ∈ Ω,∀mb ∈M,
∑

θ−x∈ΩN

p (mb |θ−x, x ) p (θ−x |x ) (B.2)

=
∑

θ−x∈ΩN

∑
ma∈M

π (mb |ma, x ) p (ma |θ−x, x ) p (θ−x |x ) ,

with
∑

mb∈M
π (mb |ma, x ) = 1.

Which gives

∀x ∈ Ω,∀mb ∈M, p (mb |x ) =
∑

ma∈M
π (mb |ma, x ) p (ma |x ) , (B.3)
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with
∑

mb∈M
π (mb |ma, x ) = 1.

Besides, Equation (B.1) can be rewritten as follows:

∀x ∈ Ω, ∀mb ∈M, ∀θ−x ∈ ΩN , p (mb, θ−x |x ) =
∑

ma∈M
π (mb |ma, x ) p (ma, θ−x |x ) ,

(B.4)
with

∑
mb∈M

π (mb |ma, x ) = 1.

Or else

∀x ∈ Ω,∀mb ∈M,∀θ−x ∈ ΩN , p (θ−x |mb, x ) p (mb |x ) (B.5)

=
∑

ma∈M
π (mb |ma, x ) p (θ−x |ma, x ) p (ma |x ) .

with
∑

mb∈M
π (mb |ma, x ) = 1.

We obtain

∀x ∈ Ω,∀mb ∈M,∀θ−x ∈ ΩN , p (θ−x |mb, x ) (B.6)

=
∑

ma∈M

π (mb |ma, x ) p (ma |x )

p (mb |x )
p (θ−x |ma, x ) .

with
∑

mb∈M
π (mb |ma, x ) = 1.

Let us introduce a new variable:

kxmbma =
π (mb |ma, x ) p (ma |x )

p (mb |x )
(B.7)

Equation (B.3) implies that

∑
ma∈M

kxmbma =

∑
ma∈M

π (mb |ma, x ) p (ma |x )

p (mb |x )
=
p (mb |x )

p (mb |x )
= 1. (B.8)

Equations (B.6), (B.7) and (B.8) give

∀x ∈ Ω,∀mb ∈M,∀θ−x ∈ ΩN , p (θ−x |mb, x ) =
∑

ma∈M
kxmbmap (θ−x |ma, x ) ,

(B.9)
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with
∑

ma∈M
kxmbma = 1.

Given that θ−x = {y1, ..., yN}, it is easy to obtain from Equation (B.9) that

∀x ∈ Ω,∀mb ∈M,∀Yn ∈ Φ/ {X} ,∀yn ∈ Ω, p (yn |mb, x ) =
∑

ma∈M
kxmbmap (yn |ma, x ) ,

(B10)

with
∑

ma∈M
kxmbma = 1.

Besides (see Equation 1), we recall that ∀Yn ∈ Φ/ {X}

∀x ∈ Ω,∀mb ∈M,v
(
CE

v,FSbx
Yn

)
= E

[
v (yn)|FSbx

]
, (B.11)

where FSbx = {x,mb}.
Or, equivalently

∀x ∈ Ω,∀mb ∈M,v
(
CEv,x,mbYn

)
=
∑
yn∈Ω

v (yn) p (yn |mb, x ) . (B.12)

From Equation (B10) and Equation (B.12), we obtain

∀x ∈ Ω,∀mb ∈M,v
(
CEv,x,mbYn

)
=
∑
yn∈Ω

v (yn)
∑

ma∈M
kxmbmap (yn |ma, x ) .

(B.13)
Or, equivalently

∀x ∈ Ω,∀mb ∈M,v
(
CEv,x,mbYn

)
=

∑
ma∈M

kxmbma

∑
yn∈Ω

v (yn) p (yn |ma, x ) .

(B.14)
We obtain the following relationship between CEv,x,maYn

and CEv,x,mbYn
:

∀X ∈ Φ,∀Yn ∈ Φ/ {X} ,∀x ∈ Ω,∀mb ∈M,v
(
CEv,x,mbYn

)
=

∑
ma∈M

kxmbmav
(
CEv,x,maYn

)
,

(B.15)
with

∑
ma∈M

kxmbma = 1.

We thus have
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∀X ∈ Φ,∀Yn ∈ Φ/ {X} ,∀x ∈ Ω,∀mb ∈M,v
(
CEv,x,mbYn

)
≤

∑
ma∈M

kxmbmav (CEv,x,maMax ) ,

(B.16)
with CEv,x,maMax = Max

{
CEv,x,maY1

, ..., CEv,x,maYN

}
.

And thus, we also have

∀X ∈ Φ,∀x ∈ Ω,∀mb ∈M,v (CEv,x,mbMax ) ≤
∑

ma∈M
kxmbmav (CEv,x,maMax ) , (B.17)

with CEv,x,mbMax = Max
{
CEv,x,mbY1

, ..., CEv,x,mbYN

}
.

Under assumption A5, equations (B.8) and (B.17) imply

∀X ∈ Φ, ∀x ∈ Ω,∀mb ∈M,v (CEv,x,mbMax ) ≤ v
∑

ma∈M
kxmbmaCE

v,x,ma
Max

)
.

(B.18)

Which implies, under A1,

∀X ∈ Φ,∀x ∈ Ω,∀mb ∈M,CEv,x,mbMax ≤
∑

ma∈M
kxmbmaCE

v,x,ma
Max . (B.19)

Which implies, under A3,

∀X ∈ Φ,∀x ∈ Ω,∀mb ∈M,u x,Max x,
∑

ma∈M
kxmbmaCE

v,x,ma
Max

))
≤ u (x,Max (x,CEv,x,mbMax )) .

(B.20)
Moreover, since the Max function is convex, we have

Max
∑

ma∈M
kxmbmax,

∑
ma∈M

kxmbmaCE
v,x,ma
Max

)
≤

∑
ma∈M

kxmbmaMax (x,CEv,x,maMax ) .

(B.21)
Given equations (B.20) and (B.21), we obtain, under A3,

∀X ∈ Φ,∀x ∈ Ω,∀mb ∈M,u x,
∑

ma∈M
kxmbmaMax (x,CEv,x,maMax )

)
≤ u (x,Max (x,CEv,x,mbMax )) .

(B.22)
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Which implies, under A4,

∀X ∈ Φ,∀x ∈ Ω,∀mb ∈M,
∑

ma∈M
kxmbmau (x,Max (x,CEv,x,maMax )) ≤ u (x,Max (x,CEv,x,mbMax )) .

(B.23)
Equations (B.7) and (B.23) give

∀X ∈ Φ,∀x ∈ Ω,∀mb ∈M,

∑
ma∈M

π (mb |ma, x ) p (ma |x )u (x,Max (x,CEv,x,maMax )) ≤ p (mb |x )u (x,Max (x,CEv,x,mbMax )) .

(B.24)
Which implies that

∀X ∈ Φ,∀x ∈ Ω,

∑
mb∈M

∑
ma∈M

π (mb |ma, x ) p (ma |x )u (x,Max (x,CEv,x,maMax )) ≤
∑
mb∈M

p (mb |x )u (x,Max (x,CEv,x,mbMax )) .

(B.25)
Or, equivalently

∀X ∈ Φ,∀x ∈ Ω,

∑
ma∈M

p (ma |x )u (x,Max (x,CEv,x,maMax ))
∑
mb∈M

π (mb |ma, x ) ≤
∑
mb∈M

p (mb |x )u (x,Max (x,CEv,x,mbMax )) .

(B.26)
Given that

∑
mb∈M

π (mb |ma, x ) = 1, we obtain

∀X ∈ Φ,∀x ∈ Ω,

∑
ma∈M

p (ma |x )u (x,Max (x,CEv,x,maMax )) ≤
∑
mb∈M

p (mb |x )u (x,Max (x,CEv,x,mbMax )) .

(B.27)
We thus have

∀X ∈ Φ,

∑
x∈Ω

p (x)
∑

ma∈M
p (ma |x )u (x,Max (x,CEv,x,maMax )) ≤

∑
x∈Ω

p (x)
∑
mb∈M

p (mb |x )u (x,Max (x,CEv,x,mbMax )) .

(B.28)
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Which allows us to conclude that

∀X ∈ Φ, E
[
u
(
X,Max

(
X,CE

v,FSaX
Max

))]
≤ E

[
u
(
X,Max

(
X,CE

v,FSbX
Max

))]
.

(B.29)
And thus

Max
Yn∈Φ

E
[
u
(
Yn,Max

(
Yn, CE

v,FSaYn
Max

))]
≤Max

Yn∈Φ
E

[
u

(
Yn,Max

(
Y,CE

v,FSbYn
Max

))]
(B.30)

Appendix C

We compute the certainty equivalents of Y1 and Y2 under FSa (see equations 1
and 2) :

Y1 Y2

When Y1 is chosen, given ma = 0 CEv,y1,ma=0
Y1

= y1 CEv,y1,ma=0
Y2

= 8

When Y1 is chosen, given ma = 1 CEv,y1,ma=1
Y1

= y1 CEv,y1,ma=1
Y2

= 18

When Y2 is chosen, given ma = 0 CEv,y1,ma=0
Y1

= 6 CEv,y2,ma=0
Y2

= y2

When Y2 is chosen, given ma = 1 CEv,y1,ma=1
Y1

= 16 CEv,y2,ma=1
Y2

= y2

Easy computations give the probability distribution ofMa
Y1
(p (ma = 0) = 3

4

and p (ma = 1) = 1
4 ) and the probability distribution of M

a
Y2
(p (ma = 0) = 1

2

and p (ma = 1) = 1
2 ). We use these probability distributions and the certainty

equivalents of Y1 and Y2 to compute the expected r-utilities (see Equation 4):

E
[
u
(
Y1, R

FSaY1

)]
= E

[
u
(
Y1,Max

{
Y1, CE

v,y1,ma
Y2

})]
=

1

2

3

4
u

6,Max {6, 8}︸ ︷︷ ︸
regret

+
1

4
u

6,Max {6, 18}︸ ︷︷ ︸
regret




+
1

2

3

4
u (16,Max {16, 8}) +

1

4
u

16,Max {16, 18}︸ ︷︷ ︸
regret




=
17

4
= 4, 25.
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E
[
u
(
Y2, R

FSaY2

)]
= E

[
u
(
Y2,Max

{
Y2, CE

v,y2,ma
Y1

})]
=

3

4

1

2
u (8,Max {8, 6}) +

1

2
u

8,Max {8, 16}︸ ︷︷ ︸
regret




+
1

4

[
1

2
u (18,Max {18, 6}) +

1

2
u (18,Max {18, 16})

]
=

15

4
= 3, 75.

We also compute the certainty equivalents of Y1 and Y2 under FSb(see equa-
tions 1 and 2) :

Y1 Y2

When Y1 is chosen, given mb = 0 CEv,y1,mb=0
Y1

= y1 CEv,y1,mb=0
Y2

= 9

When Y1 is chosen, given mb = 1 CEv,y1,mb=1
Y1

= y1 CEv,y1,mb=1
Y2

= 13

When Y2 is chosen, given mb = 0 CEv,y1,mb=0
Y1

= 17
2 CEv,y2,mb=0

Y2
= y2

When Y2 is chosen, given mb = 1 CEv,y1,mb=1
Y1

= 27
2 CEv,y2,mb=1

Y2
= y2

Easy computations give the probability distribution ofM b
Y1
(p (mb = 0) = 10

16

and p (mb = 1) = 6
16 ) and the probability distribution of M

b
Y2
(p (mb = 0) = 1

2

and p (mb = 1) = 1
2 ). We compute the expected r-utilities under FS

b:

E
[
u
(
Y1, R

FSbY1

)]
= E

[
u
(
Y1,Max

{
Y1, CE

v,y1,mb
Y2

})]
=

1

2

10

16
u

6,Max {6, 9}︸ ︷︷ ︸
regret

+
6

16
u

6,Max {6, 13}︸ ︷︷ ︸
regret




+
1

2

[
10

16
u (16,Max {16, 9}) +

6

16
u (16,Max {16, 13})

]
=

35

8
= 4, 375.
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E
[
u
(
Y2, R

FSbY2

)]
= E

[
u
(
Y2,Max

{
Y2, CE

v,y2,mb
Y1

})]

=
3

4

1

2
u

8,Max

{
8,

17

2

}
︸ ︷︷ ︸

regret

+
1

2
u

8,Max

{
8,

27

2

}
︸ ︷︷ ︸

regret




+
1

4

[
1

2
u

(
18,Max

{
18,

17

2

})
+

1

2
u

(
18,Max

{
18,

27

2

})]
=

33

8
= 4, 125.

Expected r-utilities are higher under FSbthan under FSa.

Appendix D

Proof of Proposition 3 :

First, let us show that the solution of Equation 10 exists and is unique. In
order to do that, let y and y respectively denote the minimum value and the
maximum value of Y .
If Z = y then the left-hand side of Equation 10 is

E
[
u
(
Z,Max

(
Z,CEv,FSZY

))]
= E

[
u
(
y,Max

(
y, CEv,FSZY

))]
. (D.1)

The right-hand side is

E [u (Y,Max (Y, Z))] = E [u (Y, Y )] = E [v (y)] . (D.2)

Equation 10 is not satisfied since, under A1 and A3, we have

E
[
u
(
y,Max

(
y, CEv,FSZY

))]
< u

(
y, y
)

= v
(
y
)
< E [v (y)] . (D.3)

The right-hand side of Equation 10 is greater than the left-hand side.

If Z = y then the left-hand side of Equation 10 is

E
[
u
(
Z,Max

(
Z,CEv,FSZY

))]
= u (y, y) . (D.4)

The right-hand side is

E [u (Y,Max (Y,Z))] = E [u (Y, y)] . (D.5)
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Equation 10 is not satisfied since, under A2, u (y, y) > E [u (Y, y)]. The
left-hand side of Equation 10 is now greater than the right-hand side.

Moreover, under A1, function E
[
u
(
Z,Max

(
Z,CEv,FSZY

))]
increases with

Z and under A3, function E [u (Y,Max (Y,Z))] decreases with Z. Under A0,
the solution of Equation 10 exists, is unique and belongs to

[
y, y
]
.

Proof of Proposition 4 :

If Za and Zb respectively denote the Z-solution of Equation 10 under FSa

and under FSb, let us show that Zb ≤ Za.
Proposition 1 states that if FSa is suffi cient for a FSb then we have

∀Y ∈ Φ, E
[
u
(
Y,Max

(
Y,CE

v,FSaY
Max

))]
≤ E

[
u
(
Y,Max

(
Y,CE

v,FSbY
Max

))]
.

(D.6)
This property also holds for a sure thing Z:

E
[
u
(
Z,Max

(
Z,CE

v,FSaZ
Y

))]
≤ E

[
u
(
Z,Max

(
Z,CE

v,FSbZ
Y

))]
. (D.7)

The left-hand side of Equation 10 is greater under FSb than under FSa.
The right-hand side of Equation 10, [u (Y,Max (Y,Z))], is independent of

the FS and, under A3, decreases with Z. We thus have Zb ≤ Za.
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